
First, let's deal with the fraction in the denominator of the exponent. Multiply the top and bottom of the exponent by 6.

Now that the fraction in the denominator is taken care of, we can reduce the denominator.
. Some professors might accept this as simplest form, but others might ask you to get rid of the negative.

Find, correct to the nearest degree, the three angles of the triangle with the vertices d(0,1,1), e( 2, 4,3) − , and f(1, 2, 1)
Ksju [112]
Well, here's one way to do it at least...
<span>For reference, let 'a' be the side opposite A (segment BC), 'b' be the side opposite B (segment AC) and 'c' be the side opposite C (segment AB). </span>
<span>Let P=(4,0) be the projection of B onto the x-axis. </span>
<span>Let Q=(-3,0) be the projection of C onto the x-axis. </span>
<span>Look at the angle QAC. It has tangent = 5/4 (do you see why?), so angle A is atan(5/4). </span>
<span>Likewise, angle PAB has tangent = 6/3 = 2, so angle PAB is atan(2). </span>
<span>Angle A, then, is 180 - atan(5/4) - atan(2) = 65.225. One down, two to go. </span>
<span>||b|| = sqrt(41) (use Pythagorian Theorum on triangle AQC) </span>
<span>||c|| = sqrt(45) (use Pythagorian Theorum on triangle APB) </span>
<span>Using the Law of Cosines... </span>
<span>||a||^2 = ||b||^2 + ||c||^2 - 2(||b||)(||c||)cos(A) </span>
<span>||a||^2 = 41 + 45 - 2(sqrt(41))(sqrt(45))(.4191) </span>
<span>||a||^2 = 86 - 36 </span>
<span>||a||^2 = 50 </span>
<span>||a|| = sqrt(50) </span>
<span>Now apply the Law of Sines to find the other two angles. </span>
<span>||b|| / sin(B) = ||a|| / sin(A) </span>
<span>sqrt(41) / sin(B) = sqrt(50) / .9080 </span>
<span>(.9080)sqrt(41) / sqrt(50) = sin(B) </span>
<span>.8222 = sin(B) </span>
<span>asin(.8222) = B </span>
<span>55.305 = B </span>
<span>Two down, one to go... </span>
<span>||c|| / sin(C) = ||a|| / sin(A) </span>
<span>sqrt(45) / sin(C) = sqrt(50) / .9080 </span>
<span>(.9080)sqrt(45) / sqrt(50) = sin(C) </span>
<span>.8614 = sin(C) </span>
<span>asin(.8614) = C </span>
<span>59.470 = C </span>
<span>So your three angles are: </span>
<span>A = 65.225 </span>
<span>B = 55.305 </span>
<span>C = 59.470 </span>
Answer:
i think its the second one because if you multiply a number by a decimal with a value lower than 1, then the number will go down, but im not positive
Step-by-step explanation:
9514 1404 393
Answer:
34.5 square meters
Step-by-step explanation:
We assume you want to find the area of the shaded region. (The actual question is not visible here.)
The area of the triangle (including the rectangle) is given by the formula ...
A = 1/2bh
The figure shows the base of the triangle is 11 m, and the height is 1+5+3 = 9 m. So, the triangle area is ...
A = (1/2)(11 m)(9 m) = 49.5 m^2
The rectangle area is the product of its length and width:
A = LW
The figure shows the rectangle is 5 m high and 3 m wide, so its area is ...
A = (5 m)(3 m) = 15 m^2
The shaded area is the difference between the triangle area and the rectangle area:
shaded area = 49.5 m^2 - 15 m^2 = 34.5 m^2
The shaded region has an area of 34.5 square meters.