First of all you have to find the missing measurements. The actual measurements for the angles in the hexagon are not given, but they give you an expression. You have to solve for x first so that you can plug it in and find the angle measurement. You have to equal the two sides that are given to you like this: 20x+48=33x+9. You solve for x and then plug it into each angle measurement. This should give you 108. Since it is a regular hexagon all of the sides are equal. If you look at the angle at the top of the hexagon you'll see two triangles and the angle. Since it lies on a straight line, it is all equal to 180. You already have the angle measurement of the hexagon and are missing the triangles. So 180-108=72. 72 is the missing part of the angle. You divide this by 2 in order to find each triangle angle measurements. the answer is 36 degrees.
Answer:
Hence, the model that best represents the data is:

Step-by-step explanation:
We are given a table that shows the estimated number of lines of code written by computer programmers per hour when x people are working.
We are asked to find which model best represents the data?
So for finding this we will put the value of x in each of the functions and check which hold true that which gives the value of y i.e. f(x) as is given in the table:
We are given 4 functions as:
A)

B)

C)

D)

We make the table of these values at different values of x.
x A B C D
2 66.66 49.3 52.5 50
4 94.57 71.44 106.3 104
6 134.14 103.57 160.1 158
8 190.27 150.14 213.9 212
10 269.91 217.64 267.7 266
12 382.85 315.5 321.5 320.
Hence, the function that best represents the data is:
Option C.
y=26.9x-1.3
Answer:
The <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.
Step-by-step explanation:
The data provided is as follows:
25 to 34 45 to 54
1329 2268
1906 1965
2426 1149
1826 1591
1239 1682
1514 1851
1937 1367
1454 2158
Compute the mean and standard deviation for the group "25 to 34" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [1329+1906+...+1454]=\frac{13631}{8}=1703.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1086710.875}=394.01](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B1329%2B1906%2B...%2B1454%5D%3D%5Cfrac%7B13631%7D%7B8%7D%3D1703.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201086710.875%7D%3D394.01)
Compute the <em>z</em>-score for the group "25 to 34" as follows:

Compute the mean and standard deviation for the group "45 to 54" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [2268+1965+...+2158]=\frac{14031}{8}=1753.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1028888.875}=383.39](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B2268%2B1965%2B...%2B2158%5D%3D%5Cfrac%7B14031%7D%7B8%7D%3D1753.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201028888.875%7D%3D383.39)
Compute the <em>z</em>-score for the group "45 to 54" as follows:

Thus, the <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.
Well 200 beats per second is 12,000 beats a minute times 3 for 3 minutes is 36,000 beats every three minutes
-10rt(v-10)=-60
(-10rt(v-10))/-10=-60/-10
rt(v-10)=6
(v-10)^2=6^2
v-10=36
v-10+10=36+10
v=46