answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
2 years ago
5

A 60 kilogram astronaut weighs 96 newtons on the surface of the moon. calculate the acceleration due to gravity on the moon.

Physics
2 answers:
Charra [1.4K]2 years ago
8 0

Answer:

Acceleration due to gravity on moon, 1.6\ m/s^2

Explanation:

Mass of the astronaut, m = 60 kg

Weight of astronaut on the surafce of moon, W = 96 N

The weight of astronaut is given by :

W = m g

g=\dfrac{W}{m}

g=\dfrac{96\ N}{60\ kg}

g=1.6\ m/s^2

So, the acceleration due to gravity on the surface of moon is 1.6\ m/s^2

Also, the acceleration due to gravity on the surface of moon is (1/6)th of the acceleration due to gravity on the surface of earth.

Hence, this is the required solution.

34kurt2 years ago
6 0
Given: Mass m = 60 Kg

           Weight  W = 96 N

Required: Acceleration due to gravity, g = ?

Formula:  W = mg

                g = W/g

                g = 96 Kg.m/s²/60 Kg   (note: this is the derive unit for Newton "N")

                g = 1.6 m/s²

You might be interested in
A square loop of wire with initial side length 10 cm is placed in a magnetic field of strength 1 T. The field is parallel to the
Fofino [41]

Answer:

2 x 10⁻³ volts

Explanation:

B = magnetic of magnetic field parallel to the axis of loop = 1 T

\frac{dA}{dt} = rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²

θ = Angle of the magnetic field with the area vector = 0

E = emf induced in the loop

Induced emf is given as

E = B \frac{dA}{dt}

E = (1) (20 x 10⁻⁴ )

E = 2 x 10⁻³ volts

E = 2 mV

7 0
2 years ago
A guitar string has a linear density of 8.30 ✕ 10−4 kg/m and a length of 0.660 m. the tension in the string is 56.7 n. when the
Sedbober [7]
Ans: Beat Frequency = 1.97Hz

Explanation:
The fundamental frequency on a vibrating string is 

f =   \sqrt{ \frac{T}{4mL} }<span>  -- (A)</span>

<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>


Plug in the values in Equation (A)

<span>so </span>f = \sqrt{ \frac{56.7}{4*5.48*10^{-4}*0.66} }<span> = 197.97Hz </span>

<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
3 0
2 years ago
Read 2 more answers
An overnight rainstorm has caused a major roadblock. Three massive rocks of mass m1=584 kg, m2=838 kg, and m3=322 kg have blocke
Elena-2011 [213]

Answer:

Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N

Explanation:

Total force required = Mass x Acceleration,

F = ma

Here we need to consider the system as combine, total mass need to be considered.

Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg

We need to accelerate the group of rocks from the road at 0.250 m/s²

That is acceleration, a = 0.250 m/s²

Force required, F = ma = 1744 x 0.25 = 436 N

Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N

8 0
2 years ago
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
2 years ago
Read 2 more answers
Merry-go-rounds are a common ride in park playgrounds. The ride is a horizontal disk that rotates about a vertical axis at their
Vera_Pavlovna [14]

Answer:

A = 2.36m/s

B = 3.71m/s²

C = 29.61m/s2

Explanation:

First, we convert the diameter of the ride from ft to m

10ft = 3m

Speed of the rider is the

v = circumference of the circle divided by time of rotation

v = [2π(D/2)]/T

v = [2π(3/2)]/4

v = 3π/4

v = 2.36m/s

Radial acceleration can also be found as a = v²/r

Where v = speed of the rider

r = radius of the ride

a = 2.36²/1.5

a = 3.71m/s²

If the time of revolution is halved, then radial acceleration is

A = 4π²R/T²

A = (4 * π² * 3)/2²

A = 118.44/4

A = 29.61m/s²

7 0
2 years ago
Other questions:
  • The heat capacity of an object depends in part on its ____.
    6·1 answer
  • A car travels straight for 20 miles on a road that is 30° north of east. What is the east component of the car’s displacement to
    12·2 answers
  • Based on the video, which venus phase would be impossible to see (from earth) of venus orbited earth as described in ptolemy's e
    11·2 answers
  • The starter armature is rubbing on the field coils. technician a says the bushings need to be replaced. technician b says the br
    13·2 answers
  • Match each projection to its description.
    5·2 answers
  • B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find
    13·1 answer
  • A force of 16.88 n is applied tangentially to a wheel of radius 0.340 m and causes an angular acceleration of 1.20 rad/s2. What
    15·1 answer
  • What determines whether the equilibrium temperature of a mixture of two amounts of water will be closer to the initially cooler
    5·1 answer
  • A +4.0- μC charge is placed on the x axis at x = +3.0 m, and a −2.0- μC charge is located on the y axis at y = −1.0 m. Point A i
    9·1 answer
  • Two students are discussing how the speed of the car compares to the speed of the truck when both vehicles are in front of the h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!