Answer:
51.2 mi/h
Explanation:
Total distance, d = 100 miles
First 60 miles with speed 55 mi/h
Next 40 miles with speed 75 mi/h
Time taken for first 60 miles, t1 = 60 / 55 = 1.09 h
Time taken for 40 miles, t2 = 40 / 75 = 0.533 h
Time spent to get stuck, t3 = 20 min = 0.33 h
Total time, t = t1 + t2 + t3 = 1.09 + 0.533 + 0.33 = 1.953 h
The average speed is defined as the ratio of total distance traveled to the total time taken.
Average speed = 
Thus, the average speed of the journey is 51.2 mi/h.
Answer:
( a ) The specific volume by ideal gas equation = 0.02632 
% Error = 20.75 %
(b) The value of specific volume From the generalized compressibility chart = 0.0142 
% Error = - 34.85 %
Explanation:
Pressure = 1 M pa
Temperature = 50 °c = 323 K
Gas constant ( R ) for refrigerant = 81.49 
(a). From ideal gas equation P V = m R T ---------- (1)
⇒
= 
⇒ Here
= Specific volume = v
⇒ v = 
Put all the values in the above formula we get
⇒ v =
×81.49
⇒ v = 0.02632 
This is the specific volume by ideal gas equation.
Actual value = 0.021796 
Error = 0.02632 - 0.021796 = 0.004524 
% Error =
× 100
% Error = 20.75 %
(b). From the generalized compressibility chart the value of specific volume
= v = 0.0142 
The actual value = 0.021796 
Error = 0.0142 - 0.021796 = 
% Error =
× 100
% Error = - 34.85 %
Answer:
<h2>5.6kW</h2>
Explanation:
Step one:
given
mass m= 24kg
distance moved= 6m
time taken= 4seconds
Step two:
Required
power
but work done is the force applied at a distance, and the power is the work done time the time taken
Work done= F*D
F=mg
W= mg*D
W=24*9.81*6
W=1412.6J
Power P= work * time
P=1412.6*4
p=5650.5W
P=5.6kW
The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.
Answer:
The magnitude of the magnetic force exerted on the moving charge by the current in the wire is 2.18 x
N
The direction of the magnetic force exerted on the moving charge by the current in the wire is radially inward
Explanation:
given information:
current, I = 3 A
= +6.5 x
C
r = 0.05 m
v = 280 m/s
and direction of the magnetic force exerted on the moving charge by the current in the wire, we can use the following formula:
F = qvB sin θ
where
F = magnetic force (N)
q = electric charge (C)
v = velocity (m/s)
θ = the angle between the velocity and magnetic field
to find B we use
B = μ
I/2πr
μ
= 4π x
or 1.26 x
N/
, thus
B = 4π x
x 3 / 2π(0.05)
= 1.2 x
T
Now, we can calculate the magnitude force
F = qvB sin θ
θ = 90°, because the speed and magnetic are perpendicular
F = 6.5 x
x 280 x 1.2 x
sin 90°
= 2.18 x
N
Using the hand law, the magnetic direction is radially inward