Answer:
the final temperature of the gas is 785.18 K
Explanation:
The computation of the final temperature of the gas is shown below:
Here we apply the gas law
= PV ÷ T
Given that
P1 = 1.9 atm
V1 = 24.6 L
T1 = 335 K
P2 = 3.5 atm
V2 = 31.3 L
T2 = ?
Now
P1V1 ÷ T1 = P2V2 ÷ T2
(1.9 × 24.6) ÷ 335 = (3.5 × 31.3)/T2
T2 = 785.18 K
hence, the final temperature of the gas is 785.18 K
Explanation:
It is given that,
Magnetic field, B = 0.5 T
Speed of the proton, v = 60 km/s = 60000 m/s
The helical path followed by the proton shown has a pitch of 5.0 mm, p = 0.005 m
We need to find the angle between the magnetic field and the velocity of the proton. The pitch of the helix is the product of parallel component of velocity and time period. Mathematically, it is given by :





So, the angle between the magnetic field and the velocity of the proton is 50.58 degrees. Hence, this is the required solution.
Answer:600 miles, 12
Explanation: The movement described in the question exhibits that of a polygon. Exhibiting a constant distance and angle with only varying direction until the starting point is reached.
The sum of exterior angles of a polygon = 360 degrees.
Exterior angle of a polygon = (360 ÷ number of sides)
Therefore,
Number of sides = 360 ÷ exterior angle
Exterior angle = 30 degrees
Hence,
Number of sides = 360 ÷ 30 = 12 sides
Since distance traveled of 50 miles is the same for each displacement ;
Total displacement = distance traveled * number of sides
Total displacement = 50 * 12 = 600 miles.