P = m * v
v = {3i - 4j} = square root (3^2 + 4^2) = 5
P = 20 * 5
P = 100 kg m/s
Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.
Answer:
-10.9 rad/s²
Explanation:
ω² = ω₀² + 2α(θ - θ₀)
Given:
ω = 13.5 rad/s
ω₀ = 22.0 rad/s
θ - θ₀ = 13.8 rad
(13.5)² = (22.0)² + 2α (13.8)
α = -10.9 rad/s²