Answer:
<u></u>
Explanation:
The figure attached shows the <em>Venn diagram </em>for the given sets.
<em />
<em><u>a) What is the probability that the number chosen is a multiple of 3 given that it is a factor of 24?</u></em>
<em />
From the whole numbers 1 to 15, the multiples of 3 that are factors of 24 are in the intersection of the two sets: 3, 6, and 12.
There are a total of 7 multiples of 24, from 1 to 15.
Then, there are 3 multiples of 3 out of 7 factors of 24, and the probability that the number chosen is a multiple of 3 given that is a factor of 24 is:
<em><u /></em>
<em><u>b) What is the probability that the number chosen is a factor of 24 given that it is a multiple of 3?</u></em>
The factors of 24 that are multiples of 3 are, again, 3, 6, and 12. Thus, 3 numbers.
The multiples of 3 are 3, 6, 9, 12, and 15: 5 numbers.
Then, the probability that the number chosen is a factor of 24 given that is a multiple of 3 is:
No, this rel. is not proportional because of the addition involved ("plus 1 lb for each guest").
A proportional rel. features mult. only.
Keywords:
<em>Divide, polynomial, quotient, divisor, dividend, rest
</em>
For this case, we must find the quotient by dividing the polynomial
. We must build a quotient that, when multiplied by the divisor, eliminates the terms of the dividend until it reaches the rest, as shown in the attached figure. At the end of the division, to verify we must bear in mind that:

Answer:
See attached image
2.5y + 1.1x ∠ 10
2.5y = - 1.1x +10
y = (- 1.1/2.5)x + 4
Draw this function. It's descending (m negative). All values on the left of the lines satisfy this inequality