Answer:
2 × 10⁶
Explanation:
Data provided in the question:
Cavity length, L = 
Oscillation frequency,
= 9.0 × 10¹⁴ Hz
Now,
we know,

here,
c is the speed of light = 3 × 10⁸ m/s
= Wavelength of mode m inside the laser cavity
m is the cavity mode number
Thus,

or
=
× 10⁻⁶
Also,

Therefore,
m ×
× 10⁻⁶ = 2 × 
or
m = 2 × 10⁶
Explanation:
The given data is as follows.
C =
R =
ohm
C
Q =
Formula to calculate the time is as follows.
0.135 =
= 7.407
t = 4.00 s
Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.
I think the correct answer from the choices listed above is the second option. Based on this information, we can say that there are more molecules in a gram of water since more energy is required to raise the temperature 1 gram of water than to raise the temperature of 1 gram of ethanol.
Answer:
C has the greatest capacitance and the lightest load. It will provide current to the load for the longest.
A & E are the same
B is next, and finally
D has the smallest equivalent capacitance and the heaviest load. it will run out of juice the quickest.
Curious that the pictures are out of alphabetic order A B C E D.
Explanation:
Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,


⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm