answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
2 years ago
12

An inventor claims to have developed a power cycle having a thermal efficiency of 40%, while operating between hot and cold rese

rvoirs at temperature th and tc 5 300 k, respectively, where th is (a) 900 k, (b) 500 k, (c) 375 k. evaluate the claim for each case
Physics
1 answer:
lesya [120]2 years ago
7 0

From Carnot's theorem, for any engine working between these two temperatures:


efficiency <= (1-tc/th) * 100


Given: tc = 300k (from question assuming it is not 5300 as it seems)

For a, th = 900k, efficiency = (1-300/900) = 70%

For b, th = 500k, efficiency = (1-300/500) = 40% 

For c, th = 375k, efficiency = (1-300/375) = 20% 


Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid. 

You might be interested in
10 kg cart and a 5 kg cart are placed on identical surfaces. The 10 kg cart experiences a net force of 12 N to the left, while t
SashulF [63]
F=ma

For the first (10kg) cart,
12=10a
a=6/5 m/s^2 to the left

For the second (5kg) cart,
8=5a
a=8/5 m/s^2 to the left

Therefore, the lighter (5kg) cart experiences a greater acceleration.
7 0
2 years ago
A badger is trying to cross the street. Its velocity vvv as a function of time ttt is given in the graph below where rightwards
Mrrafil [7]

Answer: -2.5

Explanation:

1/2(-5)= -2.5

-2.5(1)= -2.5

Got it right in Khan Academy. You’re welcome.

5 0
2 years ago
Do as physics instructor fred cauthen does and place a tennis ball close to and above the top of a basketball. drop the balls to
Ksivusya [100]

Answer:

after shock

creating a system for the conservation of the energy of the basketball ball and creating a system for the tennis ball only, the conservation of energy should be applied to each system independently

Explanation:

When the two balls fall they acquire the same speed since they are accelerated by the same force, their weight and the acceleration of the acceleration of gravity. When reaching the floor the mechanical energy of the system is conserved.

Upon reaching the floor, the first ball (basketball) collides with the floor, this process is very fast, at the end of the process the basketball comes out with a velicad up and collides with the much lighter tennis ball that is still descending .

we assume that the shocks are elastic, when solving the momentary and kinetic energy findings, we find the velocities after each shock

     

In this clash the tennis ball acquires a high kinetic speed with an upward direction that makes a very high height high. Again this shock is very fast and the tennis ball almost does not move.

Here we must separate the system, creating a system for the conservation of the energy of the basketball ball and another system for the tennis ball only, the conservation of energy should be applied to each system independently

Em₀ =K = 1/2 m v²

                    Em_{f} = U = m g h

As in the elastic shock the final speed of the tennis ball is approximately 2 vo, we can calculate the maximum height

                 m g h = 1/2 m (2v₀)²

                 h = 2 v₀²/g

To reconcile this with the conservation of energy we must calculate the energy for the tennis ball at two points, the first when the crash with the tennis ball ends and at the end point at its maximum height.

6 0
2 years ago
When jumping, a flea accelerates at an astounding 1000 m/s2 but over the very short distance of 0.50 mm. If a flea jumps straigh
Nadusha1986 [10]

Answer:

The flea reaches a height of 51 mm.

Explanation:

Hi there!

The equations of height and velocity of the flea are the following:

During the jump:

h = h0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

While in free fall:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the flea at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

a = acceleration of the flea due to the jump.

v = velocity of the flea at time t.

g = acceleration due to gravity.

First, let's calculate how much time it takes the flea to reach a height of 0.0005 m. With that time, we can calculate the speed reached by the flea during the jump:

h = h0 + v0 · t + 1/2 · a · t²

If we place the origin of the frame of reference on the ground, then, h0 = 0. Since the flea is initially at rest, v0 = 0. Then:

h = 1/2 · a · t²

We have to find the value of t for which h = 0.0005 m:

0.0005 m = 1/2 · 1000 m/s² · t²

0.0005 m / 500 m/s² = t²

t = 0.001 s

Now, let's find the velocity reached in that time:

v = v0 + a · t   (v0 = 0)

v = a · t

v = 1000 m/s² · 0.001 s

v = 1.00 m/s

When the flea is at a height of 0.50 mm, its velocity is 1.00 m/s. This initial velocity will start to decrease due to the downward acceleration of gravity. When the velocity is zero, the flea will be at the maximum height. Using the equation of velocity, let's find the time at which the flea is at the maximum height (v = 0):

v = v0 + g · t

At the maximum height, v = 0:

0 m/s = 1.00 m/s - 9.81 m/s² · t

-1.00 m/s / -9.81 m/s² = t

t = 0.102 s

Now, let's find the height reached by the flea in that time:

h = h0 + v0 · t + 1/2 · g · t²

h = 0.0005 m + 1.00 m/s · 0.102 s - 1/2 · 9.81 m/s² · (0.102 s)²

h = 0.051 m

The flea reaches a height of 51 mm.

5 0
2 years ago
To determine the y-component of a projectile’s velocity, what operation is performed on the angle of the launch?
koban [17]

<em>To determine the y component of velocity of a projectile </em><u><em>sine </em></u><em>operation is performed on the angle of launch.</em>

<u>Answer:</u> <em>sine</em>

<u>Explanation:</u>

Thus a_x=0,a_y=g

The initial velocity u can be resolved along two directions.

Along the X direction initial velocity = u cos θ

Along y direction initial velocity= u sin θ

From the equation of motion v= u+at

Thus velocity along x direction v_x=u cos θ

Velocity along y direction v_y= u sinθ -gt

Sign of g is negative.

3 0
2 years ago
Read 2 more answers
Other questions:
  • The rotational speeds of four generators are listed in RPM (revolutions per minute). Arrange the generators in order based on th
    13·2 answers
  • The vacuum pressure of a condenser is given to be 80 kpa. if the atmospheric pressure is 98 kpa, what is the gage pressure and a
    13·1 answer
  • A box sliding on a horizontal frictionless surface encounters a spring attached to a rigid wall and compresses the spring by a c
    9·1 answer
  • A barge is 10.0 m wide and 60.0 m long and has vertical sides. The bottom of the hull is 12.0 m below the water surface. What ar
    8·1 answer
  • Glycerin at 20 8 C fills the space between a hollow sleeve of diameter 12 cm and a fixed coaxial solid rod of diameter 11.8 cm.
    8·1 answer
  • Natalia is studying a wave produced in her magnetics lab. This wave can move through the empty space in a vacuum and carries a l
    6·2 answers
  • which has a greater kinetic energy, a bowling ball that has a mass of 5kg travelling at 6m/s, or a ship that has a mass of 12000
    15·1 answer
  • A planet of mass M and radius R has no atmosphere. The escape velocity at its surface is ve. An object of mass m is at rest a di
    15·1 answer
  • A projectile is launched at an angle of 60° from the horizontal and at a velocity of
    15·1 answer
  • A police siren of frequency fsiren is attached to a vibrating platform. The platform and siren oscillate up and down in simple h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!