P = m * v
v = {3i - 4j} = square root (3^2 + 4^2) = 5
P = 20 * 5
P = 100 kg m/s
acceleration of rocket is given here as

now we know that

now integrating both sides



here since its given that rocket will accelerate for t = 10 s
so here we have


so after t = 10 s the speed of rocket will be 130 m/s upwards
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V
Answer: They are put in front for defense so so they can block the opponents from getting the ball
Explanation:
R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω