The frequency of the red light is 428 terahertz. To get the value of the red light's frequency, use the formula F = velocity/wavelength. The velocity of light is 3.00 x 10^8 m/s. For easier computation, convert 700.5 nanometers to meter. 1 nanometer is equal to 1 x 10^-9 meters. 700.5 nanometers is equal to 7.005 x 10^-7 meters. Divide the velocity 3.00 x 10^8m/s by wavelength 7.005 x 10^-7 meters. The result will be 4.28 x 10^14 Hertz or 428 terahertz.
Answer:
The value of the linear coefficient of thermal expansion is : α=1.01 *10⁻⁵ (ºC)⁻¹
Explanation:
Li = 0.2m
ΔL = 0.2 mm = 0.0002m
T1 = 21ºC
T2 = 120ºC
ΔT =99ºC
α =ΔL/(Li*ΔT)
α =0.0002m /(0.2m * 99ºC)
α = 1.01 *10⁻⁵ (ºC)⁻¹
Answer:
1.10261 times g
416.17506 mph
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Dividing by g

The acceleration is 1.10261 times g

In mph

The speed of the dragster is 416.17506 mph
Answer:
10.4 m/s
Explanation:
The problem can be solved by using the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the diver in the problem, we have:
is the initial velocity (positive because it is upward)
is the acceleration of gravity (negative because it is downward)
By substituting t = 1.7 s, we find the velocity when the diver reaches the water:

And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.
Explanation:
It is given that,
Mass of the ball, m = 1 lb
Length of the string, l = r = 2 ft
Speed of motion, v = 10 ft/s
(a) The net tension in the string when the ball is at the top of the circle is given by :



F = 18 N
(b) The net tension in the string when the ball is at the bottom of the circle is given by :



F = 82 N
(c) Let h is the height where the ball at certain time from the top. So,


Since, 

Hence, this is the required solution.