answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
geniusboy [140]
2 years ago
9

A hollow sphere is attached to the end of a uniform rod. The sphere has a radius of 0.60 m and a mass of 0.44 kg. The rod has a

length of 1.28 m and a mass of 0.48 kg. The rod is placed on a fulcrum (pivot) at X = 0.46 m from the left end of the rod. Calculate the moment of inertia (click for graphical table) of the contraption around the fulcrum.
Physics
1 answer:
siniylev [52]2 years ago
3 0

Answer:Moment of inertia is the property of a body due to which it resists angular acceleration. It is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation.

Explanation: I = m*r*r

Given mass of sphere = 0.4kg

Radius of sphere = 0.6m

Moment of Inertia of sphere = (2/3)*0.4* 0.6

Inertia of sphere = 0.096 kgm2

Given mass of rod = 0.48kg

Length of rod = 1.28m

Inertia of rod = (m*L*L)/3

I = (0.48 * 1.28 * 1.28)/3

I = 0.218 kgm2

Total Moment of inertia I = 0.096 + 0.218

I = 0.314 kgm2

You might be interested in
What is the value of g on the surface of Saturn? Assume M-Saturn = 5.68×10^26 kg and R-Saturn = 5.82×10^7 m.Choose the appropria
Likurg_2 [28]

Answer:

Approximately \rm 11.2 \; N \cdot kg^{-1} at that distance from the center of the planet.

Option A) The low value of g near the cloud top of Saturn is possible because of the low density of the planet.

Explanation:

The value of g on a planet measures the size of gravity on an object for each unit of its mass. The equation for gravity is:

\displaystyle \frac{G \cdot M \cdot m}{R^2},

where

  • G \approx 6.67\times 10^{-11}\; \rm N \cdot kg^{-2} \cdot m^2.
  • M is the mass of the planet, and
  • m is the mass of the object.

To find an equation for g, divide the equation for gravity by the mass of the object:

\displaystyle g = \left.\frac{G \cdot M \cdot m}{R^2} \right/\frac{1}{m} = \frac{G \cdot M}{R^2}.

In this case,

  • M = 5.68\times 10^{26}\; \rm kg, and
  • R = 5.82 \times 10^7\; \rm m.

Calculate g based on these values:

\begin{aligned} g &= \frac{G \cdot M}{R^2}\cr &= \frac{6.67\times 10^{-11}\; \rm N \cdot kg^{-2} \cdot m^2\times 5.68\times 10^{26}\; \rm kg}{\left(5.82\times 10^7\; \rm m\right)^2} \cr &\approx 11.2\; \rm N\cdot kg^{-1} \end{aligned}.

Saturn is a gas giant. Most of its volume was filled with gas. In comparison, the earth is a rocky planet. Most of its volume was filled with solid and molten rocks. As a result, the average density of the earth would be greater than the average density of Saturn.

Refer to the equation for g:

\displaystyle g = \frac{G \cdot M}{R^2}.

The mass of the planet is in the numerator. If two planets are of the same size, g would be greater at the surface of the more massive planet.

On the other hand, if the mass of the planet is large while its density is small, its radius also needs to be very large. Since R is in the denominator of g, increasing the value of R while keeping M constant would reduce the value of g. That explains why the value of g near the "surface" (cloud tops) of Saturn is about the same as that on the surface of the earth (approximately 9.81\; \rm N \cdot kg^{-1}.

As a side note, 5.82\times 10^7\rm \; m likely refers to the distance from the center of Saturn to its cloud tops. Hence, it would be more appropriate to say that the value of g near the cloud tops of Saturn is approximately \rm 11.2 \; N \cdot kg^{-1}.

6 0
2 years ago
Suppose that we are designing a cardiac pacemaker circuit. The circuit is required to deliver pulses of 1ms duration to the hear
olchik [2.2K]

Answer:

Minimum capacitance = 200 μF

Explanation:

From image B attached, we can calculate the current flowing through the capacitors.

Thus;

Since V=IR; I = V/R = 5/500 = 0.01 A

Maximum charge in voltage is from 5V to 4.9V. Thus, each capacitor will have 2.5V. Hence, change in voltage(Δv) for each capacitor will be ; Δv = 0.05 V

So minimum capacitance will be determined from;

i(t) = C(dv/dt)

So, C = i(t)(Δt/Δv) = 0.01[0.001/0.05]

C = 0.01 x 0.0002 = 200 x 10^(-6) F = 200 μF

8 0
2 years ago
A 4kg bird has 8 joules of kinetic energy, how fast is it flying?
Igoryamba
I believe the answer is 2m/s
7 0
2 years ago
Read 2 more answers
A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. Th
alina1380 [7]

A) Zero

The motion of the shot is a projectile's motion: this means that there is only one force acting on the projectile, which is gravity. However, gravity only acts in the vertical direction: so, there are no forces acting in the horizontal direction. Therefore, the x-component of the acceleration is zero.

B) -9.8 m/s^2

The vertical acceleration is given by the only force acting in the vertical direction, which is gravity:

F=mg

where m is the projectile's mass and g is the gravitational acceleration. Therefore, the y-component of the shot's acceleration is equal to the acceleration due to gravity:

a_y = g = -9.8 m/s^2

where the negative sign means it points downward.

C) 7.6 m/s

The x-component of the shot's velocity is given by:

v_x = v_0 cos \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_x = (12.0 m/s)(cos 51^{\circ})=7.6 m/s

D) 9.3 m/s

The y-component of the shot's velocity is given by:

v_y = v_0 sin \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_y = (12.0 m/s)(sin 51^{\circ})=9.3 m/s

E) 7.6 m/s

We said at point A) that the acceleration along the x-direction is zero: therefore, the velocity along the x-direction does not change, so the x-component of the velocity at the end of the trajectory is equal to the x-velocity at the beginning:

v_x = 7.6 m/s

F) -11.1 m/s

The y-component of the velocity at time t is given by:

v_y(t) = v_y + at

where

v_y = 9.3 m/s is the initial y-velocity

a = g = -9.8 m/s^2 is the vertical acceleration

t is the time

Since the total time of the motion is t=2.08 s, we can substitute this value into the equation, and we find:

v_y(2.08 s)=9.3 m/s + (-9.8 m/s^2)(2.08 s)=-11.1 m/s

where the negative sign means the vertical velocity is now downward.

3 0
2 years ago
Joanna has become good friends with Janna, whose name begins with the same letter as hers. They sit next to each other in three
solmaris [256]
Proximity -------------------- APEX
5 0
2 years ago
Read 2 more answers
Other questions:
  • A star is located at a distance of about 100 million light years from Earth. An astronomer plans to measure the distance of the
    11·1 answer
  • what velocity must a 1340kg car have in order to havw the same momentum as a 2680 kg truck traveling at a velocity of 15m/s to t
    12·1 answer
  • A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward a
    6·1 answer
  • Ferdinand the frog is hopping from lily pad to lily pad in search of a good fly
    5·1 answer
  • The Sun orbits the center of the Milky Way galaxy once each 2.60 × 108 years, with a roughly circular orbit averaging 3.00 × 104
    6·1 answer
  • On the planet Abby, there is an homozygous lethal condition known as Gumball. Individuals with this condition chew gum till thei
    7·1 answer
  • .A 0.2-kg aluminum plate, initially at 20°C, slides down a 15-m-long surface, inclined at a 30 angle to the horizontal. The forc
    14·1 answer
  • What is not a similarity between mars and earth today?
    15·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • In an experiment, a torque of a known magnitude is exerted along the edge of a rotating disk. The disk rotates about its center.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!