Answer:
pH → 7.46
Explanation:
We begin with the autoionization of water. This equilibrium reaction is:
2H₂O ⇄ H₃O⁺ + OH⁻ Kw = 1×10⁻¹⁴ at 25°C
Kw = [H₃O⁺] . [OH⁻]
We do not consider [H₂O] in the expression for the constant.
[H₃O⁺] = [OH⁻] = √1×10⁻¹⁴ → 1×10⁻⁷ M
Kw depends on the temperature
0.12×10⁻¹⁴ = [H₃O⁺] . [OH⁻] → [H₃O⁺] = [OH⁻] at 0°C
√0.12×10⁻¹⁴ = [H₃O⁺] → 3.46×10⁻⁸ M
- log [H₃O⁺] = pH
pH = - log 3.46×10⁻⁸ → 7.46
Metallic elements can bend because they have the property of being ductile. This means that a solid material stretches under tensile stress. If a material is ductile then it may be stretched into a wire. Further, the material can also be malleable.
M(NiS₂) = 11.2 g.
n(NiS₂) = m(NiS₂) ÷ M(NiS₂).
n(NiS₂) = 11.2 g ÷ 122.8 g/mol.
n(NiS₂) = 0.091 mol.
m(O₂) = 5.43 g.
n(O₂) = 5.43 g ÷ 32 g/mol.
n(O₂) = 0.17 mol; limiting reactant.
From chemical reaction: n(NiS₂) : n(O₂) = 2 : 5.
0.091 mol : n(O₂) = 2 : 5.
n(O₂) = 0.2275 mol, not enough.
n(NiO) = 4.89 g .
n(O₂) : n(NiS) = 5 : 2.
n(NiS) = 0.068 mol.
m(NiS) = 0.068 mol · 74.7 g/mol = 5.08 g.
percent yield = 4.89 g / 5.08 g · 100% = 96.2%.
At the first reaction when 2HBr(g) ⇄ H2(g) + Br2(g)
So Kc = [H2] [Br2] / [HBr]^2
7.04X10^-2 = [H2][Br] / [HBr]^2
at the second reaction when 1/2 H2(g) + 1/2 Br2 (g) ⇄ HBr
Its Kc value will = [HBr] / [H2]^1/2*[Br2]^1/2
we will make the first formula of Kc upside down:
1/7.04X10^-2 = [HBr]^2/[H2][Br2]
and by taking the square root:
∴ √(1/7.04X10^-2)= [HBr] / [H2]^1/2*[Br]^1/2
∴ Kc for the second reaction = √(1/7.04X10^-2) = 3.769
Answer:
The following subsections explain the explanation according to the particular circumstance.
Explanation:
- The boiling point seems to be the temperature beyond which the working fluid as well as the boiling phase would be at a predetermined pressure or voltage at equilibrium among one another and.
- The vapor or boiling temperature of 1,1 difluoroethane seems to be -25oC at 1 atm, although as a gas it can remain at a higher temperature around -24oC.