answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
2 years ago
15

A 2 kg stone is tied to a 0.5 m string and swung around a circle at a constant angular velocity of 12 rad/s. the angular momentu

m of the stone about the center of the circle is:
Physics
1 answer:
Illusion [34]2 years ago
3 0
Starting from the angular velocity, we can calculate the tangential velocity of the stone:
v=\omega r= (12 rad/s)(0.5 m)= 6 m/s

Then we can calculate the angular momentum of the stone about the center of the circle, given by
L=mvr
where
m is the stone mass
v its tangential velocity
r is the radius of the circle, that corresponds to the length of the string.

Substituting the data of the problem, we find
L=(2 kg)(6 m/s)(0.5 m)=6 kg m^2 s^{-1}
You might be interested in
Two 8.0 Ω lightbulbs are connected in a 12 V series circuit. What is the power of both glowing bulbs?
V125BC [204]

Answer:

18 W

Explanation:

Applying,

P = V²/R.................. Equation 1

Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs

Since: It is a series circuit,

Then,

R = R1+R2............. Equation 2

Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb

Given: R1 = R2 = 8 Ω

Substitute into equation 1

R = 8+8

R = 16 Ω

Also Given: V = 12 V

Substitute into equation 1

P = 12²/8

P = 144/8

P = 18 W

7 0
2 years ago
The hammer throw was one of the earliest Olympic events. In this event, a heavy ball attached to a chain is swung several times
Aleonysh [2.5K]

Answer:

Given that

T= 0.43 s

Radius of the ball path's , r=2.1 m

a)

We know that

f= 1/T

Here f= frequency

      T= Time period

Now by putting the values

f= 1/T

T= 0.43 s

f= 1/0.43

f=2.32 Hz

b)

We know that

V= ω r

ω = 2 π f

ω=Angular speed

V= Linear speed

ω = 2 π f=ω = 2 x π x 2.32 =14.60 rad/s

V= ω r= 14.60 x 2.1 = 30.66 m/s

c)

Acceleration ,a

a =ω ² r

a= 14.6 ² x 2.1 = 447.63 m/s²

We know that g = 10 m/s²

So

a= a/g= 447.63/10 = 44.7 g m/s²

a= 44.7 g m/s²

7 0
2 years ago
An 80 kg skateboarder moving at 3 m/s pushes off with her back foot to move faster. If her velocity increases to 5 m/s, what is
Arturiano [62]
1) The kinetic energy of an object is given by:
K= \frac{1}{2}mv^2
where m is the object's mass and v its speed.

By using this equation, we find the initial kinetic energy of the skateboarder:
K_i= \frac{1}{2}(80 kg)(3 m/s)^2=360 J
and the final kinetic energy as well:
K_f= \frac{1}{2}(80 kg)(5 m/s)^2=1000 J

So, her change in kinetic energy is
\Delta K=K_f-K_i=1000 J-360 J=640 J

2) The work-energy theorem states that the work done to increase the speed of an object is equal to the variation of kinetic energy of the object:
W=\Delta K
Therefore, the work done by the skateboarder is
W=\Delta K=640 J
7 0
2 years ago
Read 2 more answers
Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t
Leni [432]

A. 6.67 cm

The focal length of the lens can be found by using the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}

where we have

f = focal length

s = 12 cm is the distance of the object from the lens

s' = 15 cm is the distance of the image from the lens

Solving the equation for f, we find

\frac{1}{f}=\frac{1}{12 cm}+\frac{1}{15 cm}=0.15 cm^{-1}\\f=\frac{1}{0.15 cm^{-1}}=6.67 cm

B. Converging

According to sign convention for lenses, we have:

- Converging (convex) lenses have focal length with positive sign

- Diverging (concave) lenses have focal length with negative sign

In this case, the focal length of the lens is positive, so the lens is a converging lens.

C. -1.25

The magnification of the lens is given by

M=-\frac{s'}{s}

where

s' = 15 cm is the distance of the image from the lens

s = 12 cm is the distance of the object from the lens

Substituting into the equation, we find

M=-\frac{15 cm}{12 cm}=-1.25

D. Real and inverted

The magnification equation can be also rewritten as

M=\frac{y'}{y}

where

y' is the size of the image

y is the size of the object

Re-arranging it, we have

y'=My

Since in this case M is negative, it means that y' has opposite sign compared to y: this means that the image is inverted.

Also, the sign of s' tells us if the image is real of virtual. In fact:

- s' is positive: image is real

- s' is negative: image is virtual

In this case, s' is positive, so the image is real.

E. Virtual

In this case, the magnification is 5/9, so we have

M=\frac{5}{9}=-\frac{s'}{s}

which can be rewritten as

s'=-M s = -\frac{5}{9}s

which means that s' has opposite sign than s: therefore, the image is virtual.

F. 12.0 cm

From the magnification equation, we can write

s'=-Ms

and then we can substitute it into the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}\\\frac{1}{f}=\frac{1}{s}+\frac{1}{-Ms}

and we can solve for s:

\frac{1}{f}=\frac{M-1}{Ms}\\f=\frac{Ms}{M-1}\\s=\frac{f(M-1)}{M}=\frac{(-15 cm)(\frac{5}{9}-1}{\frac{5}{9}}=12.0 cm

G. -6.67 cm

Now the image distance can be directly found by using again the magnification equation:

s'=-Ms=-\frac{5}{9}(12.0 cm)=-6.67 cm

And the sign of s' (negative) also tells us that the image is virtual.

H. -24.0 cm

In this case, the image is twice as tall as the object, so the magnification is

M = 2

and the distance of the image from the lens is

s' = -24 cm

The problem is asking us for the image distance: however, this is already given by the problem,

s' = -24 cm

so, this is the answer. And the fact that its sign is negative tells us that the image is virtual.

3 0
2 years ago
Which of the following situations would violate the second law of<br> thermodynamics?
Musya8 [376]
Heat flows irreversibly from hot to cold
4 0
2 years ago
Read 2 more answers
Other questions:
  • In at least 150 words, discuss how Chang's use of personification, metaphor, or connotation express one his themes in "Garden of
    8·1 answer
  • A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
    14·1 answer
  • Lexy used the formula shown to calculate the force of gravity on a space shuttle. Fg = G What does 3 × 105 kg represent? the dif
    10·1 answer
  • Which force changes the lithosphere by building up the surface?
    5·1 answer
  • Determine the change in thermal energy of 100 g of copper (M = 63,5, Debye 348K) if it is cooled from
    10·1 answer
  • A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point P, it encounters a rough section. The coefficie
    7·2 answers
  • 1. Do alto de uma plataforma com 15m de altura, é lançado horizontalmente um projéctil. Pretende-se atingir um alvo localizado n
    9·1 answer
  • A hot piece of iron is thrown into the ocean and its temperature eventually stabilizes. Which of the following statements concer
    12·1 answer
  • The average standard rectangular building brick has a mass of 3.10 kg and dimensions of 225 m x 112 m x 75 m. The gravitational
    8·1 answer
  • Assuming both graduated cylinders are holding water at room temperature, which cylinder has more thermal energy?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!