Answer:
1.1 sec
Explanation:
m = mass of the box = 8 kg
k = spring constant of the spring = 69 N/m
v = initial speed of the box = 1.5 m/s
t = time period of oscillation of box in contact with the spring
Time period is given as

Inserting the values

t = 1.1 sec
Answer:
Solid
Explanation:
The plasma is the liquid part of blood, it is 90% and accounts for 55% of blood volume. It is what red blood cells, white blood cells, and platelets move around in. These cells remain solid within the plasma. I hoped this helped!
The only information you would need to decide if the can will float is the density of the can, which requires knowing the mass and volume. If the density of the can is less than one, the can will float. if it is greater than one, it will not float, as water's density is one.
Answer:
The centripetal force acting on the skater is <u>48.32 N.</u>
Explanation:
Given:
Radius of circular track is, 
Tangential speed of the skater is, 
Mass of the skater is, 
We are asked to find the centripetal force acting on the skater.
We know that, when an object is under circular motion, the force acting on the object is directly proportional to the mass and square of tangential speed and inversely proportional to the radius of the circular path. This force is called centripetal force.
Centripetal force acting on the skater is given as:

Now, plug in the given values of the known quantities and solve for centripetal force,
. This gives,

Therefore, the centripetal force acting on the skater is 48.32 N.
Answer:
1. The force of the shelf holding the book up.
Explanation:
The free body diagram of the book is as follows:
1 - The weight of the book towards downwards
2 - The normal force that the shelf exerts on the book towards upwards.
Since the book is at rest, these two forces are equal to each other and according to Newton's Third Law the reaction force to the force of gravity is equal but opposite to the weight of the book. This reaction force is the one that holds the book up on the shelf.