570/8.5=67.0 58... you only have to take the natural part, si the answer is 67 students
Answer:
9.70 × 10^4 is equal to 97000
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
Answer:
The empirical formula is = 
The molecular formula = 
Explanation:
% of C = 10.13
Molar mass of C = 12.0107 g/mol
% moles of C = 10.13 / 12.0107 = 0.8434
% of Cl = 89.87
Molar mass of Cl = 35.453 g/mol
% moles of Cl = 89.87 / 35.453 = 2.5349
Taking the simplest ratio for C and Cl as:
0.8434 : 2.5349
= 1 : 3
The empirical formula is = 
Molecular formulas is the actual number of atoms of each element in the compound while empirical formulas is the simplest or reduced ratio of the elements in the compound.
Thus,
Molecular mass = n × Empirical mass
Where, n is any positive number from 1, 2, 3...
Mass from the Empirical formula = 12*1 + 3*35.5 = 118.5 g/mol
Molar mass = 237 g/mol
So,
Molecular mass = n × Empirical mass
237 = n × 118.5
⇒ n ≅ 2
The molecular formula = 
Answer: Option (a) is the correct answer.
Explanation:
At low pressure and high temperature there exists no force of attraction or repulsion between the molecules of a gas. Hence, gases behave ideally at these conditions.
Whereas at low temperature there occurs a decrease in kinetic energy of gas molecules and high pressure causes the molecules to come closer to each other.
As a result, there exists force of attraction between the molecules at low temperature and high pressure and under these conditions gases are known as real gases.
Thus, we can conclude that the ideal gas law tends to become inaccurate when the pressure is raised and the temperature is lowered.