Divide the flow rate (0.750 m³/s) by the cross-sectional area of each pipe:
diameter = 40 mm ==> area = <em>π</em> (0.04 m)² ≈ 0.00503 m²
diameter = 120 mm ==> area = <em>π</em> (0.12 m)² ≈ 0.0452 m²
Then the speed at the end of the 40 mm pipe is
(0.750 m³/s) / (0.00503 m²) ≈ 149.208 m/s ≈ 149 m/s
(0.750 m³/s) / (0.0452 m²) ≈ 16.579 m/s ≈ 16.6 m/s
The heavy stone would produce waves with a higher amplitude, rather than the smaller stone, because since the stone is heaver its going to have a grater impact and displace more water to create a bigger wave.
We need the power law for the change in potential energy (due to the Coulomb force) in bringing a charge q from infinity to distance r from charge Q. We are only interested in the ratio U₁/U₂, so I'm not going to bother with constants (like the permittivity of space).
<span>The potential energy of charge q is proportional to </span>
<span>∫[s=r to ∞] qQs⁻²ds = -qQs⁻¹|[s=r to ∞] = qQr⁻¹, </span>
<span>so if r₂ = 3r₁ and q₂ = q₁/4, then </span>
<span>U₁/U₂ = q₁Qr₂/(r₁q₂Q) = (q₁/q₂)(r₂/r₁) </span>
<span>= 4•3 = 12.</span>
Answer:
4.17 m/s
Explanation:
To solve this problem, let's start by analyzing the vertical motion of the pea.
The initial vertical velocity of the pea is

Now we can solve the problem by applying the suvat equation:

where
is the vertical velocity when the pea hits the ceiling
is the acceleration of gravity
s = 1.90 is the distance from the ceiling
Solving for
,

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

Therefore, the speed of the pea when it hits the ceiling is

Answer:14 m
Explanation:
Given
Vertical jump make by the dolphin is given by 
Suppose the dolphin jump with an initial velocity of 
so u is given by 
If dolphin launches at an angle
then maximum horizontal range is given by
assuming the of Dolphin to be Projectile so range is given by

substitute the value of 


Range will be maximum for 
thus 