Answer:
Ok:
Explanation:
So, you can use the Henderson-Hasselbalch equation for this:
pH = pKa + log(
) where A- is the conjugate base of the acid. In other words, A- is the deprotonated form and HA is the protonated.
We can solve that
1 = log(
) and so 10 =
or 10HA = A-. For every 1 protonated form of adenosine (HA), there are 10 A-. So, the percent in the protonated form will be 1(1+10) or 1/11 which is close to 9 percent.
Answer:
Explanation:I would need more info to understand this question but explaining molecules is pretty easy tho
During this phase Change heat energy is being absorbed by the molecules, and as a result the molecules possess a greater ability to move around and possess higher kinetic energy because of this. The molecules also possess a higher potential energy.
Answer:
The K sp Value is 
Explanation:
From the question we are told that
The of
is = 122.5 g/ mol
The mass of
dissolved is 
The volume of solution is 
The number of moles of
is mathematically evaluated as

Substituting values


Generally concentration is mathematically represented as
For


The dissociation reaction of
is

The solubility product constant is mathematically represented as

Since there is no ionic reactant we have
![K_{sp} = [k^+] [ClO_3^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5Bk%5E%2B%5D%20%5BClO_3%5E-%5D)



Answer:
2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)
Explanation:
K2CO3(aq) + 2CuF(aq) → Cu2CO3(s) + 2KF(aq)
The complete ionic equation for the above equation can be written as follow:
In solution, K2CO3 and CuF will dissociate as follow:
K2CO3(aq) —› 2K+(aq) + CO3²¯(aq)
CuF(aq) —› Ca^2+(aq) + 2F¯(aq)
Thus, we can write the complete ionic equation for the reaction as shown below:
K2CO3(aq) + 2CuF(aq) —›
2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)