Answer:
longitudinal wave
Explanation:
it is perpendicular to the direction of the wave
Acceleration, a = (v - u)/t
where v is the final velocity, u is the initial velocity, and t is the time.
This formula on a velocity time graph represents the slope of the graph.
Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
Answer:v=2 m/s
Explanation:
Given
Length of string L=1.2 m
mass of pendulum m=0.25 kg
maximum inclination with vertical \theta =34
vertical Rise of Pendulum from its mean position is given by

Conserving Energy at top and bottom point
Potential Energy of sphere is converted into kinetic energy of sphere





The correct answer to the question is that the lost mass has been converted into energy.
EXPLANATION:
From Einstein's theory, we know that energy and mass are inter convertible .
When some amount of mass is lost, same amount of energy equivalent to mass is produced.
Let us consider m is the mass lost during any reaction. Hence, the amount of energy produced will be-
Energy E =
Here, c is the velocity of light i.e c = 
As per the question, uranium-235 undergoes fission. The amount of mass defect is 0.1 %.
The mass defect is defined as the difference between mass of reactants and products. During the fission, energy is produced.
The energy produced in this reaction is nothing else than the energy equivalent to mass defect. Approximately 199.5 Mev of energy equivalent to this mass defect is produced in this reaction.