Answer:
The maximum amount of mechanical energy converted to internal energy during the fall is 26.7 joules
Explanation:
Potential Energy (PE) = weight of baseball × height = 1.47N × 10m = 14.7Nm = 14.7 joules
Kinetic Energy (KE) = 12 joules
Maximum amount of mechanical energy converted to internal energy during the fall = PE + KE = 14.7 joules + 12 joules = 26.7 joules
Answer:
d ≈ 7,6 g/cm³
Explanation:
d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³
V = l³ = (1.74cm)³ ≈ 5,27 cm³
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
Answer:
1) Recollapsing universe
2) critical universe
3) Coasting universe
Explanation:
According to the smallest ration (ratio actual mass density to current density) to largest ration, rank of models for expansion of universe are
1) Recollapsing universe -in this, metric expansion of space is reverse and universe recollapses.
2) critical universe - in this, expansion of universe is very low.
3) Coasting universe - in this, expansion of universe is steady and uniform
Answer:
43.58 m
Explanation:
If you travel 500 m on a straight road that slopes upward at a constant angle of 5 degrees
Using trigonometry ratio
Sin 5 = opposite/hypothenus
Where the hypothenus = 500m
Opposite = height h
Sin 5 = h/500
Cross multiply
500 × sin 5 = h
h = 500 × 0.08715
h = 43.58m
Therefore, the height above the starting point is equal to 43.58m