Answer:
the answer the correct is 3
Explanation:
Let's use the relationship between momentum and momentum
I = Δp
I = m
- m v₀
Let's calculate
I = 0.4 5.0 - 0
I = 2.0 N s
By Newton's law of action and reaction the force on the ball is equal to the force that the ball exerts on the foot, therefore the impulse on the foot of equal magnitude, but in the opposite direction
I = 2.0 Ns with 60°
When reviewing the answer the correct is 3
Answer:
Explanation:
I dont know if this will help but A two force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a two force member in static equilibrium, the net force at each location must be equal, opposite, and collinear.
Answer: Resistance = 
The approximate diameter of a penny is, <em>d</em> = 20 mm
thickness of penny is, <em>L = </em> 1.5×
mm
The area of penny along circular face is,
= 3.14×
m²
The resistivity of copper is <em>ρ</em> = 1.72 x 10-8 Ωm.
Resistance,

Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 
To solve this problem we will apply the concepts related to the kinematic equations of linear motion. From them we will consider speed as the distance traveled per unit of time. Said unit of time will be cleared to find the total time taken to travel the given distance. Later with the calculated average times and distances, we will obtain the average speed.
PART A)
The time taken to travel a distance of 250km with a speed of 95km/h is



Time taken for the lunch is

The time taken travel a distance of 250km with a speed of 55km/h



The total time taken is



The average speed is the ratio of total distance and total time


PART B)
As the displacement is zero the average velocity is zero.