We solve this using special
relativity. Special relativity actually places the relativistic mass to be the
rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt
(1 - (v/c)^2). <span>
We want a ratio of 3000000 to 1, or 3 million to 1.
</span>
<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2)
1 - (v/c)^2 = (0.000000333)^2
0.99999999999999 = (v/c)^2
0.99999999999999 = v/c
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>
Answer:
-10.9 rad/s²
Explanation:
ω² = ω₀² + 2α(θ - θ₀)
Given:
ω = 13.5 rad/s
ω₀ = 22.0 rad/s
θ - θ₀ = 13.8 rad
(13.5)² = (22.0)² + 2α (13.8)
α = -10.9 rad/s²
Answer:
B). to the right
Explanation:
Since the direction of magnetic field is into the page
So here we know that

now the velocity is from bottom to top
so we have

now the force on the moving charge is given as

now we have


so force will be towards Right
Answer:
Few millimeter thick aluminium, water, wood, acrylic glass or plastic.
Explanation:
The materials that are best for protection against beta particles are few millimeter thickness of aluminium, but for the high energy beta-particles radiations the low atomic mass materials such as plastic, wood, water and acrylic glass can be used.
These materials can also be used in personal protective equipment which includes all the clothing that can be worn to prevent any injury or illness due to the exposure to radiation.