Answer:
230 m/s northeast, 1.8 m/s up
Explanation:
204 kilometres = 204000 metres
15.0 minutes = 900 seconds
Velocity = Distance / Time
= 204000 / 900
= 230 m/s northeast (to 2 sf.)
1.6km = 1600 metres
Velocity = 1600 / 900
= 1.8 m/s up (to 2 sf.)
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
Hi, thank you for posting your question here at Brainly.
To compute for the change in potential energy, the equation would be:
delta PE = mg*delta h
delta PE = 0.5*9.81*(2-1.8)
delta Pe = 0.98 J
The potential energy is converted to kinetic energy.
Answer:

Explanation:
Given that:
mass of object A, 
mass of object B, 
speed of object A, 
So, according to the conservation of momentum, the momentum before collision is equal to the momentum after conservation.




Answer: The spring of the spring is 25 N/m.
Explanation:
Mass of the body = 25 g= 0.025 kg (1 kg = 1000 g)
Oscillation is 4 sec = 20
Oscillation in 1 sec =
Frequency of the vibration of the spring = 
Force constant can be calculated bu using the relation between the frequency and, mass and spring constant 'k'



The spring of the spring is 25 N/m.