Dab
10. <span>A block with mass m = 6.2 kg is attached to two springs with spring constants kleft = 31.0 N/m and kright = 49.0 N/m. The block is pulled a distance x = 0.2 m to the left of its equilibrium position and released from rest
</span>
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
Answer: (a) The gravitational force on the object at the North Pole of Neptune is 51.7N
(b) The apparent weight of the object at Neptune's equator is 50.4N
Explanation: Please see the attachments below
Use Scoratic it works with any time of subject
T= 24.5 feet per second. That is the velocity it reaches at the end of its fall