Answer:
Los fusibles están diseñados de tal forma que estos se "rompen" o se funden, cuando la demanda eléctrica supera un dado valor (cuando demasiada electricidad pasa a través de el).
Una vez el filamento se rompe, la corriente ya no puede circular por el (podes pensar en esta situación como un cable roto, la electricidad no puede circular por este cable)
Entonces, al romperse el filamento, en caso de una sobrecarga eléctrica, el flujo de electricidad se corta, y de esta forma se protege al computador de posibles sobrecargas.
Answer:
Explanation:
moment of inertia of each blade which is similar to rod rotating about its one end
= 1/3 ml²
moment of inertia of 3 blades = ml²
= 5500 x 46²
I = 11638 x 10³ kg m²
angular velocity = 2πn where n is rotation per second
n = 11 / 60
angular velocity = 2π x 11/60
= 1.1513 rad /s
angular momentum
= moment of inertia x angular velocity
= 11638 x 10³ x 1.1513
= 13399 x 10³ kg m² per second.
Answer:
1.89mol
Explanation:
The entropy change during free expansion is express as

Where S is the entropy of the system,
n is the amount of mole
R is the gas constant = 8.314 and
V is the volume occupied at the initial and final stage
since the process is n adiabatic free expansion, the entropy of the system is constant. Hence we can re-write the equation as

where the
and 
and
Now if we substitute in values we arrive at

Answer: Option (A) is the correct answer.
Explanation:
Emotions are the output of feelings. When we exercise, we tend to feel healthy in terms of emotions, mental well being, spiritual well being etc.
As a result, exercise bring a lot of change in our health and attitude. But when exercise provides a healthy outlet for feelings, then it helps improve emotional health.
Answer:
See the attached image and the explanation below
Explanation:
We must draw a schematic of the described problem, after the sketch it is necessary to make a free body diagram, at the time before and after cutting the cord.
These free body diagrams can be seen in the attached image.
First we perform a sum of forces on the x & y axes before cutting the cord, to be able to find the T tension of the wire. (This analysis can be seen in the attached image).
In this way we get the T-wire tension equation, before cutting.
Now we make another free body diagram, for the moment when the wire is cut (see in the attached diagram).
It is important to clarify that when the cord is cut, the system will no longer be in statically, therefore newton's second law will be used for summation of forces which will be equal to the product of mass by acceleration.
Finally with equations 1 and 2 we can find the K ratio.