Answer: The friction force.
Justification:
Since the box is sliding over the table, the normal force equals the weight of the object (and any other vertical force that is applied on the box).
So, the normal force and weight (along with any other vertical component of a force applied on the box) must be 10 N and 10 N.
The other two forces: 14 N and 7 N are the forces in the plane of the table and should be opposite in a same line. The 14 N force is the responsible of the motion and the 7N force is opposing the 14 N force, so the 7N force has to be the friction force. Of course, 14N - 7N > 0 which is why the box is moving.
12000 I iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Answer: 13 grams
Explanation:
The quantity of heat energy (Q) released from a heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 202.8 Joules
Mass of silver = ?
C = 0.240 J/g °C.
Φ = 65°C
Then, Q = MCΦ
202.8J = M x 0.240 J/g °C x 65°C
202.8J = M x 15.6 J/g
M = (202.8J / 15.6 J/g)
M = 13 g
Thus, the mass of silver is 13 grams
Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol
potential energy with the heat given to the food