answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
1 year ago
6

99×101 has the same value as (99×100)+1 (99×100)-(99×1) (99×100)+(99×1) (99×100)(99×1)

Mathematics
2 answers:
Nuetrik [128]1 year ago
6 0

99 * 101=

99 * (100+1)

= 99 * 100 + 99*1

(99×100)+(99×1)


liberstina [14]1 year ago
4 0

The answer is (99 * 100) + (99 * 1)

You might be interested in
4x+3 =23<br>2x - 10 = -32<br>- 4x + 1 = -27<br>6x - 2 = -20​
Scrat [10]

Answer:

1)x = 5

2)× = -11

3)x = 7

4)x = 3.66

7 0
2 years ago
The coordinates of the vertices for the figure HIJK are H(0, 5), I(3, 3), J(4, –1), and K(1, 1).
pogonyaev

Answer: The quadrilateral HIJK is a parallelogram.

Explanation:

It is given that the coordinates of the vertices for the figure HIJK are H(0, 5), I(3, 3), J(4, –1), and K(1, 1).

The parallelogram diagonal theorem states that  the quadrilateral is a parallelogram if both diagonal bisects each other.

If HIJK is a quadrilateral, then HJ and IK are the diagonals of HIJK.

First we find the midpoint of HJ.

\text{Midpoint of HJ}=(\frac{0+4}{2}, \frac{5-1}{2})

\text{Midpoint of HJ}=(2,2)

Now, find the midpoint of IK.

\text{Midpoint of IK}=(\frac{3+1}{2}, \frac{3+1}{2})

\text{Midpoint of IK}=(2,2)

The midpoint of both diagonal are same. It means the diagonals of HIJK bisects each other.

By parallelogram diagonal theorem, we can say that the quadrilateral HIJK is a parallelogram.

7 0
2 years ago
Read 2 more answers
The graph of the function f(x) = (x + 2)(x + 6) is shown below.
iren [92.7K]

Answer:

Step-by-step explanation:

f(x) = (x + 2)(x +6)

1) The function is positive for all real values of x where   x > –4 :

COUNTER-EXAMPLE : x =  - 3   you have -3>-4 but   (-3+2)(-3+6) = -1 ×3 =-3 no positive .

2) The function is positive for all real values of x where

x < –6 or x > –3.

COUNTER-EXAMPLE : x =  - 2.5   you have -2.5>-3 but   (-2.5+2)(-2.5+6) = -0.5 ×3.5 =-1.75 no positive .

same method for the statement : "The function is negative for all real values of x where

x < –2."

conclusion : statement about the function is true: "The function is negative for all real values of x where

–6 < x < –2."

.

4 0
2 years ago
Read 2 more answers
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
A school cafeteria sells milk at 25 cents per carton and salads at 45 cents each. one week the total sales for these items were
denis-greek [22]

solution:

Lets start with the most amount that could have been sold.......using guess and check, we can figure out that 290 salads could have been sold, while 8 cartons of milk would have been sold.

The least amount of salads that could have been sold were none.

so,

you have  0<s<290

at least none were sold, and at most 290 were sold

but I do believe you are missing part of the question


4 0
2 years ago
Other questions:
  • Show how to solve the problem 378x6 using place value with regrouping. Explain how you knew when to regroup.
    6·1 answer
  • 12, 26, 18, 8, 80, 14, 56, 16 The data above shows the number of points scored by each player on a basketball team during a regi
    11·2 answers
  • Madison starts with a population of 1,000 amoebas that triples in size every hour for a number of hours, h. She writes the expre
    9·2 answers
  • Paper plates cost $8 per package and plastic utensils cost $5 per package. Your supplier delivers 15 packages for a total cost o
    7·1 answer
  • What is the following simplified product? Assume x≥0. 2√8x^3(3√10x^4-x√5x^2)
    11·1 answer
  • CD is the perpendicular bisector AB. G is the midpoint of AB. points E and F lie on CD. which pair of line segments must be cong
    7·2 answers
  • 50pts help! consider this quadratic equation. 2x^2-1=3x+4 Which equation correctly applies to the quadratic formula?
    15·2 answers
  • Mr. Snow bought 90 grams of Christmas candy for each of his 14 grandchildren. How many total kilograms of candy did he buy?
    12·1 answer
  • Pablo shares 525 cupcakes in the ratio of 3:4 between his
    8·1 answer
  • Which number line represents the solution to 2.5 – 1.2x &lt; 6.5 – 3.2x? A number line from negative 5 to 5 in increments of 1.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!