answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
2 years ago
7

A student produces a power of p = 0.87 kw while pushing a block of mass m = 75 kg on an inclined surface making an angle of θ =

8.5 degrees with respect to the horizontal. the coefficient of kinetic friction between the block and the incline is μk = 0.16. randomized variables p = 0.87 kw m = 75 kg θ = 8.5 degrees μk = 0.16 50% part (a) write an expression for the maximum constant speed, vm, the block travels at under the power applied by the student.
Physics
1 answer:
Paul [167]2 years ago
6 0

When block is pushed upwards along the inclined plane

the net force applied on the block will be given as

F_{net} = mg sin\theta + \mu_k mg cos\theta

here we know that

m = 75 kg

\theta = 8.5 degree

\mu_k = 0.16

now plug in all values into this

F_{net} = 75\times 9.8 sin8.5 + 0.16 \times 75\times 9.8 cos8.5

F = 225 N

now for finding the power is given as

P = Fv

0.87 \times 10^3 = 225 \time v

v = \frac{870}{225} = 3.87 m/s

You might be interested in
Suppose two astronauts on a spacewalk are floating motionless in space, 3.0 m apart. Astronaut B tosses a 15.0 kg IMAX camera to
marta [7]

Answer:

\frac{ 112.5}{15+m_{A}}=v_{f}

(we need the mass of the astronaut A)

Explanation:

We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed v_{iA} of 0 m/s and a mass m_{A} and the IMAX camera with an initial speed v_{ic} of 7.5 m/s and a mass m_{c} of 15.0 kg.

The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

P_{i}=p_{ic}+p_{iA}\\P_{i}=m_{c}v_{ic}+m_{A} v_{iA}\\P_{i}=15*7.5 + m_{A}*0\\P_{i}=112.5 \frac{kg.m}{s}

By the law of conservation we know that P_{i} =P_{f}

For P_{f} (final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).

So:

P_{i} =P_{f}=112.5\\

112.5=(m_{c}+m_{A})v_{f}\\\frac{ 112.5}{m_{c}+m_{A}}=v_{f}\\\frac{ 112.5}{15+m_{A}}=v_{f}

3 0
2 years ago
A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an angular acceleration of 0.745 ra
skelet666 [1.2K]

Answer:

So the acceleration of the child will be 8.05m/sec^2

Explanation:

We have given angular speed of the child \omega =1.25rad/sec

Radius r = 4.65 m

Angular acceleration \alpha =0.745rad/sec^2

We know that linear velocity is given by v=\omega r=1.25\times 4.65=5.815m/sec

We know that radial acceleration is given by a=\frac{v^2}{r}=\frac{5.815^2}{4.65}=7.2718m/sec^2

Tangential acceleration is given by

a_t=\alpha r=0.745\times 4.65=3.464m/sec^

So total acceleration will be a=\sqrt{7.2718^2+3.464^2}=8.05m/sec^2

7 0
2 years ago
In preparation for a demonstration, your professor brings a 1.50−L bottle of sulfur dioxide into the lecture hall before class t
mina [271]

Answer:

n = 2.06 moles

Explanation:

The absolute pressure at depth of 27 inches can be calculated by:

Pressure = Pressure read + Zero Gauge pressure

Zero Gauge pressure = 14.7 psi

Pressure read = 480 psi

Total pressure = 480 psi + 14.7 psi = 494.7 psi

P (psi) = 1/14.696  P(atm)

So, Pressure = 33.66 atm

Temperature = 25°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (25 + 273.15) K = 298.15 K  

T = 298.15 K  

Volume = 1.50 L

Using ideal gas equation as:

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L.atm/K.mol

Applying the equation as:

33.66 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K  

⇒n = 2.06 moles

7 0
2 years ago
A horizontal spring with spring constant 85 n/m extends outward from a wall just above floor level. a 3.5 kg box sliding across
Rina8888 [55]

k = spring constant of the spring = 85 N/m

m = mass of the box sliding towards the spring = 3.5 kg

v = speed of box just before colliding with the spring = ?

x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m

the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.

Using conservation of energy

Kinetic energy of spring before collision = spring energy of spring after compression

(0.5) m v² = (0.5) k x²

m v² = k x²

inserting the values

(3.5 kg) v² = (85 N/m) (0.065 m)²

v = 0.32 m/s

8 0
2 years ago
A falling skydiver opens his parachute. A short time later, the weight of the skydiver-parachute system and the drag force exert
Dimas [21]

A falling skydiver opens his parachute. A short time later, the weight of the skydiver-parachute system and the drag force exerted on the system are equal in magnitude. The following statements predicts the motion of the skydiver at this time

<u>The skydiver is moving downward with constant speed.</u>

Explanation:

Immediately on leaving the aircraft, the skydiver accelerates downwards due to the force of gravity. There is no air resistance acting in the upwards direction, and there is a resultant force acting downwards. The skydiver accelerates towards the ground.

The forces acting on a falling leaf are : gravity and air resistance.

The net force and the acceleration on the falling skydiver is upward.

An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down.

As the speed decreases, the amount of air resistance also decreases until once more the skydiver reaches a terminal velocity.

<u>A skydiver falling at a constant speed opens his parachute. When the skydiver is falling, the forces are unbalanced.</u>

6 0
2 years ago
Other questions:
  • 3. You have three stars. Star A has an apparent magnitude of 7, Star B has an apparent magnitude of 2, and Star C has an apparen
    14·1 answer
  • Which of the following ways is usable energy lost?
    14·2 answers
  • Mark has diabetes and needs to undergo dialysis twice a week. Dialysis purifies the body by removing waste and excess water from
    12·2 answers
  • Suppose that a barometer was made using oil with rho=900 kg/m3. What is the height of the barometer at atmospheric pressure?
    10·1 answer
  • A man is standing on a platform that is connected to a pulley arrangement, as the drawing shows. By pulling upward on the rope w
    9·1 answer
  • A 2.0-kg projectile moves from its initial position to a point that is displaced 20 m horizontally and 15 m above its initial po
    9·2 answers
  • a water heater has a power rating of 1 kW. how many seconds will this heater take to boil 1 liter of water?
    9·1 answer
  • The same fluid flows through four different branching pipes. It enters each pipe from the left with the same speed, v0, and flow
    13·1 answer
  • You decide to work at a heart rate of 150 instead of 120. What area of F.I.T.T. did you change?
    12·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!