Complete Question
The complete question is shown on the first and second uploaded image
Answer:
The power created is 
Explanation:
From the question we are told that
The that the average power is mathematically represented as

Where W is is the Workdone which is mathematically represented as

Where F is the applies force and s is the displacement due to the force
So

Now this displacement can be represented mathematically as

Where
is the average velocity and
is the time taken
So

=> 
The hoop is attached.
Consider that the friction force is given by:
F = μ·N
= μ·m·g·cosθ
We also know, considering the forces of the whole system, that:
F = -m·a + m·g·sinθ
and
a = (1/2)·<span>g·sinθ
Therefore:
</span>-(1/2)·m·g·sinθ + m·g·sinθ = <span>μ·m·g·cosθ
</span>(1/2)·m·g·sinθ = <span>μ·m·g·cosθ
</span>μ = (1/2)·m·g·sinθ / <span>m·g·cosθ
= </span>(1/2)·tanθ
Now, solve for θ:
θ = tan⁻¹(2·μ)
= tan⁻¹(2·0.9)
= 61°
Therefore, the maximum angle <span>you could ride down without worrying about skidding is
61°.</span>
Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
The question above can be answered through using the concept of Conservation of Momentum which may be expressed as,
m1v1 + m2v2 = mTvT
where m1 and v1 are mass and initial velocity of Tex, 2s are that of the bull, and the Ts are the total. Then substituting,
(85 kg)(3 m/s) + (520 kg)(13 m/s) = (520 + 85)(vT)
The value of vT obtained from above equation is 11.6 m/s