answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
2 years ago
15

A uniformly charged rod (length = 2.0 m, charge per unit length = 5.0 nc/m) is bent to form one quadrant of a circle. what is th

e magnitude of the electric field at the center of the circle?
Physics
1 answer:
Neko [114]2 years ago
4 0

Electric field at the center of circular arc is given by the formula

E = \frac{2k\lambda sin\frac{\theta}{2}}{R}

here we know that

\lambda = 5nC/m

k = 9 \times 10^9 Nm^2/C^2

\frac{\pi}{2}R = L = 2m

R = \frac{4}{\pi}

also we know that

\theta = \frac{\pi}{2}

now from above formula

E = \frac{2(9\times 10^{-9})(5\times 10^{-9})sin45}{4/\pi}

E = 50 N/C

You might be interested in
In ideal flow, a liquid of density 850 kg/m3 moves from a horizontal tube of radius 1.00 cm into a second horizontal tube of rad
Crank

Answer:

a)   Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1] , b) Q = 3.4 10⁻² m³ / s , c)      Q = 4.8 10⁻² m³ / s

Explanation:

We can solve this fluid problem with Bernoulli's equation.

         P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

With the two tubes they are at the same height y₁ = y₂

        P₁-P₂ = ½ ρ (v₂² - v₁²)

The flow rate is given by

         A₁ v₁ = A₂ v₂

         v₂ = v₁ A₁ / A₂

We replace

         ΔP = ½ ρ [(v₁ A₁ / A₂)² - v₁²]

         ΔP = ½ ρ v₁² [(A₁ / A₂)² -1]

Let's clear the speed

         v₁ = √ 2ΔP /ρ[(A₁ / A₂)² -1]

The expression for the flow is

           Q = A v

           Q = A₁ v₁

           Q = A₁ √ 2ΔP / rho [(A₁ / A₂)² -1]

The areas are

            A₁ = π r₁

            A₂ = π r₂

We replace

        Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1]

Let's calculate for the different pressures

      r₁ = d₁ / 2 = 1.00 / 2

      r₁ = 0.500 10⁻² m

      r₂ = 0.250 10⁻² m

b) ΔP = 6.00 kPa = 6 10³ Pa

      Q = π 0.5 10⁻² √(2 6.00 10³ / (850 (0.5² / 0.25² -1))

       Q = 1.57 10⁻² √(12 10³/2550)

        Q = 3.4 10⁻² m³ / s

c) ΔP = 12 10³ Pa

        Q = 1.57 10⁻² √(2 12 10³ / (850 3)

         Q = 4.8 10⁻² m³ / s

5 0
2 years ago
The boom hoisting sheave must have pitch diameters of no less than _______times the nominal diameter of the rope used.
alexira [117]

Answer:

18 times

Explanation:

According to the security purposes which is set under the rules and regulation OSHA, which describes all the rights to the worker.

In the boom hoist receiving system all the sheaves which are used should have a pitch diameter of rope not less than 18 times the diameter of the nominal rope which is used.

7 0
2 years ago
The movie "The Gods Must Be Crazy" begins with a pilot dropping a bottle out of an airplane. A surprised native below, who think
Sergio039 [100]

Answer:

⇔⇔⇔↑∑∑∩∅¬⊕║⊇↔∴∉∵

Explanation:

8 0
2 years ago
If no friction acts on a diver during a dive, then which of the following statements is true? A) The total mechanical energy of
EleoNora [17]
If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.

Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).

The initial PE = mgh₁ and the initial KE  = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
 
Therefore
(KE + PE) ₁ = (KE + PE)₂

Evaluate the given answers.
A) The total mechanical energy of the system increases.
     FALSE

B) Potential energy can be converted into kinetic energy but not vice versa.
     TRUE

C) (KE + PE)beginning = (KE + PE) end.
     TRUE

D) All of the above.
     FALSE

4 0
2 years ago
Read 2 more answers
A 0.50-kg mass attached to the end of a string swings in a vertical circle (radius 2.0 m). When the mass is at the highest point
il63 [147K]

Answer:

31.1 N

Explanation:

m = mass attached to string = 0.50 kg

r = radius of the vertical circle = 2.0 m

v = speed of the mass at the highest point = 12 m/s

T = force of the string on the mass attached.

At the highest point, force equation is given as

T + mg =\frac{mv^{2}}{r}

Inserting the values

T + (0.50)(9.8) =\frac{(0.50)(12)^{2}}{2}

T = 31.1 N

7 0
2 years ago
Read 2 more answers
Other questions:
  • ____ 27. An amusement park ride has a frequency of 0.05 Hz. What is the ride’s period?
    15·1 answer
  • What is the wavelength of a 100-mhz ("fm 100") radio signal?
    14·2 answers
  • If the current in a wire increases from 5 A to 10 A, what happens to its magnetic field? If the distance of a charged particle f
    14·2 answers
  • A square loop of wire with initial side length 10 cm is placed in a magnetic field of strength 1 T. The field is parallel to the
    10·1 answer
  • When Earth’s Northern Hemisphere is tilted toward the Sun during June, some would argue that the cause of our seasons is that th
    5·1 answer
  • A weatherman carried an aneroid barometer from the ground floor to his office atop the Sears Tower in Chicago. On the level grou
    10·1 answer
  • A binary star system consists of two stars of masses m1 and m2. The stars, which gravitationally attract each other, revolve aro
    12·1 answer
  • A uniform 1.4-kg rod that is 0.75 m long is suspended at rest from the ceiling by two springs, one at each end of the rod. Both
    8·1 answer
  • A herringbone or tire track pattern on a radiograph is a result of: _______.A. Insufficient vertical angulation B. Film bending
    5·1 answer
  • In an attempt to impress its friends, an acrobatic beetle runs and jumps off the bottom step of a flight of stairs. The step is
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!