Answer:
99.95%
Explanation:
A double pulsar system named PSR J0737-3039A/B in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.
A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.

Actually Welcome to the concept of Efficiency.
Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%
The efficiency is => 22% => 22/100.
so we get as,
E = W(output) /W(input)
hence, W(output) = E x W(input)
so we get as,
W(output) = (22/100) x 2.2 x 10^7
=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7
hence, W(output) = 4.84 x 10^6 J
The useful work done on the mass is 4.84 x 10^6 J
<h2>Answer: at an angle

below the inclined plane.
</h2>
If we draw the <u>Free Body Diagram</u> for this situation (figure attached), taking into account only the gravity force in this case, we will see the weight
of the block, which is directly proportional to the gravity acceleration
:

This force is directed vertically at an angle
below the inclined plane, this means it has an X-component and a Y-component:



Therefore the correct option is c
Refer to the diagram shown below.
Neglect wind resistance, and use g = 9.8 m/s².
The pole vaulter falls with an initial vertical velocity of u = 0.
If the velocity upon hitting the pad is v, then
v² = 2*(9.8 m/s²)*(4.2 m) = 82.32 (m/s)²
v = 9.037 m/s
The pole vaulter comes to res after the pad compresses by 50 cm (or 0.5 m).
If the average acceleration (actually deceleration) is (a m/s²), then
0 = (9.037 m/s)² + 2*(a m/s²)*(0.5 m)
a = - 82.32/(2*0.5) = - 82 m/s²
Answer: - 82 m/s² (or a deceleration of 82 m/s²)
His average speed is (35m/45s) = 7/9 meters per second.
His average velocity is (30m W + 5m E) / (45s) = 25 m/s West .