Answer:
C8H17N
Explanation:
Mass of the unknown compound = 5.024 mg
Mass of CO2 = 13.90 mg
Mass of H2O = 6.048 mg
Next, we shall determine the mass of carbon, hydrogen and nitrogen present in the compound. This is illustrated below:
For carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C = 12/44 x 13.90 = 3.791 mg
For hydrogen, H:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H = 2/18 x 6.048 = 0.672 mg
For nitrogen, N:
Mass N = mass of unknown – (mass of C + mass of H)
Mass of N = 5.024 – (3.791 + 0.672)
Mass of N = 0.561 mg
Now, we can obtain the empirical formula for the compound as follow:
C = 3.791 mg
H = 0.672 mg
N = 0.561 mg
Divide each by their molar mass
C = 3.791 / 12 = 0.316
H = 0.672 / 1 = 0.672
N = 0.561 / 14 = 0.040
Divide by the smallest
C = 0.316 / 0.04 = 8
H = 0.672 / 0.04 = 17
N = 0.040 / 0.04 = 1
Therefore, the empirical formula for the compound is C8H17N
Answer:
0.12 mol KCl
Explanation:
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
15 g x mol
x g KCl = 15 g KClO3 x[ (1 mol KClO3)/ (122.5 g KClO3) ] x [(2 mol KCl)/ (2 mol KClO3)]
x g KCl = 0.12 mol KCl
Answer:
Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Explanation:
CHECK THE COMPLETE QUESTION BELOW;
A metal sample is heated and placed into the water in a calorimeter at room temperature. Which statement best describes how the calorimeter can be used to determine the specific heat capacity of the metal sample?
Energy transfers to the metal from the water and calorimeter until they are all at room temperature
. Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Energy transfers to the metal from the water and calorimeter until they all reach a single temperature.
Energy transfers from the metal to the water and calorimeter until they all reach a single temperature.
EXPLANATION;
Using calorimeter to determine the specific heat capacity of the metal sample can be associated to the theory of conservation of energy because heat which is a form of energy is been transfer of heat between the metal to the water and the calorimeter, this process will proceed till single temperature is attained.
The change in the amount of temperature of the water in the calorimeter is measured in order to get the difference in heat change of the calorimeter water.
CHANGE IN HEAT CAN BE CALCULATED USING THE FORMULA.
Q = cmΔT where Q is the change in heat , c is the specific heat capacity and ΔT is the change in temperature
They are considered malleable. They can be made into sheets
Happy to help! Please mark me as the brainliest!