Answer:- Volume of the gas in the flask after the reaction is 156.0 L.
Solution:- The balanced equation for the combustion of ethane is:

From the balanced equation, ethane and oxygen react in 2:7 mol ratio or 2:7 volume ratio as we are assuming ideal behavior.
Let's see if any one of them is limiting by calculating the required volume of one for the other. Let's say we calculate required volume of oxygen for given 36.0 L of ethane as:

= 126 L 
126 L of oxygen are required to react completely with 36.0 L of ethane but only 105.0 L of oxygen are available, It means oxygen is limiting reactant.
let's calculate the volumes of each product gas formed for 105.0 L of oxygen as:

= 60.0 L 
Similarly, let's calculate the volume of water vapors formed:

= 90.0 L 
Since ethane is present in excess, the remaining volume of it would also be present in the flask.
Let's first calculate how many liters of it were used to react with 105.0 L of oxygen and then subtract them from given volume of ethane to know it's remaining volume:

= 30.0 L 
Excess volume of ethane = 36.0 L - 30.0 L = 6.0 L
Total volume of gas in the flask after reaction = 6.0 L + 60.0 L + 90.0 L = 156.0 L
Hence. the answer is 156.0 L.
Volume = Mass / Density
Volume = 540g / 2.70 g/ml
Volume = 200 ml
Answer:
A) ∆Suniv >0, ∆G<0, T∆Suniv >0.
Explanation:
The connection between entropy and the spontaneity of a reaction is expressed by the <u>second law of thermodynamics</u><u>: The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process</u>.
Mathematically, we can express the second law of thermodynamics as follows:
For a spontaneous process: ΔSuniv = ΔSsys + ΔSsurr > 0
Therefore, the second law of thermodynamics tells us that a spontaneous reaction increases the entropy of the universe; that is, ΔSuniv > 0.
If we want spontaneity expressed only in terms of the properties of the system (ΔHsys and ΔSsys), we use the following equation:
-TΔSuniv = ΔHsys - TΔSsys < 0
That means that T∆Suniv >0.
This equation says that for a process carried out at constant pressure and temperature T, if the changes in enthalpy and entropy of the system are such that <u>ΔHsys - TΔSsys is less than zero, the process must be spontaneous.</u>
Finally, if the change in free energy is less than zero (ΔG<0), the reaction is spontaneous in the forward direction.