500 water molecules and the remaining 500 O2 molecules. Remember the ratio of H to O in H2O.
Answer : HazCom
Explanation : Hazard communication which is also known as HazCom, is a set of processes and procedures that every employers and importers must implement in their workplace to effectively communicate hazards associated with chemicals during handling, shipping, and any form of exposure.
The OSHA Hazard Communication Standard is a U.S. regulation which governs the evaluation and communication of hazards associated with chemicals at the workplace. It is typically not attached to any specific chemical container but is stored in the workplace.
Answer:
1.98 M
Explanation:
Given data
- Initial volume (V₁): 93.2 mL
- Initial concentration (C₁): 2.03 M
- Volume of water added: 3.92 L
Step 1: Convert V₁ to liters
We will use the relationship 1 L = 1000 mL.

Step 2: Calculate the final volume (V₂)
The final volume is the sum of the initial volume and the volume of water.

Step 3: Calculate the final concentration (C₂)
We will use the dilution rule.

Mixing of pure orbitals having nearly equal energy to form equal number of completely new orbitals is said to be hybridization.
For the compound,
the electronic configuration of the atoms, carbon and hydrogen are:
Carbon (atomic number=6): In ground state= 
In excited state: 
Hydrogen (atomic number=1): 
All the bonds in the compound is single bond(
-bond) that is they are formed by head on collision of the orbitals.
The structure of the compound is shown in the image.
The Carbon-Hydrogen bond is formed by overlapping of s-orbital of hydrogen to p-orbital of carbon.
In order to complete the octet the required number of electrons for carbon is 4 and for hydrogen is 1. So, the electron in
of hydrogen will overlap to the 2p^{3}-orbital of carbon.
Thus, the hybridization of Hydrogen is
-hybridization and the hybridization of Carbon is
-hybridization.
The hybridization of each atom is shown in the image.
Answer:
1. Galvanic oxidation. Example is the corrosion of aluminium wires when in contact with copper wires under wet conditions.
2. Rainwater or Damp/moist air
3. Chromium-plated steel screws or stainless steel screws or galvanized steel screws
Explanation:
1. Galvanic oxidation or corrosion occurs when two different metals with different electrode potentials are brought into contact with each other by means of an electrolyte (usually a aqueous solution), such that a redox reaction occurs leading to one metal with the more negative electrode potential (the anode) becoming oxidized, while the other less negative potential (the cathode) is reduced.
In order for galvanic corrosion to occur, three elements are required.
i. Two metals with different corrosion potentials (anode and cathode)
ii. Direct metal-to-metal electrical contact
iii. A conductive electrolyte solution (e.g. water) must connect the two metals on a regular basis.
For example oxidation (corrosion) of aluminium wires when in contact with copper wire under wet conditions.
2. The most likely electrolyte will be rainwater containing dissoved solutes (if the panel is in an exposed part of the house) or damp/moist air.
3. From the table, the most likely screw will be chromium-plated steel screws or stainless steel (made of iron and nickel) screws or galvanized steel (zinc-plated) screws.
All these possible screw components have a more negative electrode potential than copper. Thus they will serve as the anode in a galvanic oxidation with copper.