Answer:
The enthalpy of the reaction is –184.6 kJ, and the reaction is exothermic.
Explanation:
Answer:
(1) separate the substances
(2) chemically combine the substances
(3) determine the freezing point of the mixture
(4) predict the electrical conductivity of the mixture
Explanation:
The best and most correct answer among the choices provided by your question is the third choice or letter C.
The best model of a water <span>molecule would be: </span><span>Two small, plastic balls attached to a larger plastic ball by toothpicks</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
<span>n this order, Ď=1.8gmL, cm=0.5, and mole fraction = 0.9
First, let's start with wt%, which is the symbol for weight percent. 98wt% means that for every 100g of solution, 98g represent sulphuric acid, H2SO4.
We know that 1dm3=1L, so H2SO4's molarity is
C=nV=18.0moles1.0L=18M
In order to determine sulphuric acid solution's density, we need to find its mass; H2SO4's molar mass is 98.0gmol, so
18.0moles1Lâ‹…98.0g1mole=1764g1L
Since we've determined that we have 1764g of H2SO4 in 1L, we'll use the wt% to determine the mass of the solution
98.0wt%=98g.H2SO4100.0g.solution=1764gmasssolution→
masssolution=1764gâ‹…100.0g98g=1800g
Therefore, 1L of 98wt% H2SO4 solution will have a density of
Ď=mV=1800g1.0â‹…103mL=1.8gmL
H2SO4's molality, which is defined as the number of moles of solute divided by the mass in kg of the solvent; assuming the solvent is water, this will turn out to be
cm=nH2SO4masssolvent=18moles(1800â’1764)â‹…10â’3kg=0.5m
Since mole fraction is defined as the number of moles of one substance divided by the total number of moles in the solution, and knowing the water's molar mass is 18gmol, we could determine that
100g.solutionâ‹…98g100gâ‹…1mole98g=1 mole H2SO4
100g.solutionâ‹…(100â’98)g100gâ‹…1mole18g=0.11 moles H2O
So, H2SO4's mole fraction is
molefractionH2SO4=11+0.11=0.9</span>
Fluorine 20 (F - Atomic number 9 and atomic mass 20). Firstly we need to know what is beta decay. Beta decay occurs when one neutron changes into a proton and an electron therefore the atomic mass will remain the same as even though we loose a neutron it is replaced by a proton, the atomic number is always raised by 1 when one beta decay occurs. The produced electron is shot out of the nucleus at an incredible speed. This speedy electron we call a beta particle.
Ok now the reaction.
20 20 0
F -> Ne + e
9 10 -1
Remember the atomic number determines the nature of the element ( i.e what elemnt it is).
Hope this helps :).