Answer:
Explanation:
wavelength λ = 12.4 x 10⁻² m .
energy of one photon = h c / λ
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 12.4 x 10⁻²
= 1.6 x 10⁻²⁴ J .
Let density of coffee be equal to density of water .
mass of coffee = 255 x 1 = 255 g
heat required to heat up coffee = mass x specific heat x rise in temp
= 255 x 4.18 x ( 62-25 )
= 39438.3 J .
No of photons required = heat energy required / energy of one photon
= 39438.3 / 1.6 x 10⁻²⁴
= 24649 x 10²⁴
= 24.65 x 10²⁷ .
the balanced chemical equation for decomposition of HgO is as follows
2HgO --> 2Hg + O₂
stoichiometry of HgO to O₂ is 2:1
number of HgO moles heated are - 3.00 g / 216.59 g/mol = 0.0139 mol
according to stoichiometry of reaction -
number of O₂ moles formed = 0.0139 mol/ 2 = 0.00695 mol
mass of O₂ to be formed - 0.00695 mol x 32.00 g/mol = 0.2224 g
but the actual yield = 0.195 g
percent yield = actual yield / theoretical yield x 100 %
percent yield = 0.195 g / 0.2224 g x 100 % = 87.7 %
answer is 87.7 %
First step is to determine the valency of each of x and CaCO3 from the given compounds:
1- As for Li2CO3: we can deduce that the valency of lithium is one while that of CO3 is two
2- As for XCl3: we can deduce that the valency of chlorine is one while that of X is three
Second step is to write the required compound:
X : CO3 (elements involved)
3 : 2 (write the valency of each)
Then write the positive ion (X) followed by the valency of the negative ion (2) and then the negative ion (CO3) followed by the valency of the positive ion (3).
The final x carbonate is written as: X2(CO3)3
Sugar is formed through covalent bonds since there are no metal ions for the conduction of electricty. There are also no delocalized electrons within sugar that allow for the flow of electricty
Answer:
Hydrogen ions or protons
Explanation:
Electron transport carriers is a series of complexes that transfer electrons from electron donors to electron acceptors via redox reactions, and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. This creates an electrochemical proton gradient that drives the synthesis of ATP, a molecule that stores energy chemically in the form of highly strained bonds. The molecules of the chain include peptides, enzymes (which are proteins or protein complexes), and others. The final acceptor of electrons in the electron transport chain during aerobic respiration is molecular oxygen although a variety of acceptors other than oxygen such as sulfate exist in anaerobic respiration.