Answer:
a = 4.72 m/s²
Explanation:
given,
mass of the box (m)= 6 Kg
angle of inclination (θ) = 39°
coefficient of kinetic friction (μ) = 0.19
magnitude of acceleration = ?
box is sliding downward so,
F - f = m a
f is the friction force
m g sinθ - μ N = ma
m g sinθ - μ m g cos θ = ma
a = g sinθ - μ g cos θ
a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°
a = 4.72 m/s²
the magnitude of acceleration of the box down the slope is a = 4.72 m/s²
Answer:
1027.2 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 32.2 ft/s


The height the tomato would fall is 450+577.2 = 1027.2 m
P = m * v
v = {3i - 4j} = square root (3^2 + 4^2) = 5
P = 20 * 5
P = 100 kg m/s
Through the work of Max Planck<span>, Einstein, </span>Louis de Broglie<span>, </span>Arthur Compton<span>, </span>Niels Bohr<span>, current scientific theory holds that all particles also have a wave nature (and vice versa).</span>
Answer:
560 N/m
Explanation:
F = kx
75 N = k (0.61 m − L)
210 N = k (0.85 m − L)
Divide the equations:
2.8 = (0.85 − L) / (0.61 − L)
2.8 (0.61 − L) = 0.85 − L
1.708 − 2.8L = 0.85 − L
0.858 = 1.8L
L = 0.477
Plug into either equation and find k.
75 = k (0.61 − 0.477)
k = 562.5
Rounded to two significant figures, k = 560 N/m.