When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:
F = mg
Where,
m = mass
g = Gravitational acceleration
F = 5*9.8
F = 49N
Therefore the correct answer is E.
Answer:
t₁ = 0.95 s
Explanation:
In this chaos we must use the definition of Newton's second law
F = m a = m dv / dt
dv = F dt / m
Let's replace and integrate, let's take the upward direction of the plane as positive, the force is positive
dv = ∫ (3 + 2t) dt / m
v = (3 t + 2 t²/ 2) /m
Let's evaluate between the lower limit t = 0 v = -6 ft / s (going down) to the upper limit t = t and v = 0
0 - (-6) = (3 (t- 0) + (t² -0)) / m
t² + 3t -6m = 0
Let's look for the mass
W = mg
m = W / g
m = 20/32
m = 0.625 slug
Let's solve the second degree equation
t² + 3t -3.75 = 0
t = (-3 ± √ (32 + 4 1 3.75)) / 2
t = (-3 ± 4,899) / 2
t₁ = 0.95 s
t₂ = -3.95 s
We take the positive time
Answer:

Explanation:
given data
density of current sheet = 0.40 A/m
length a = 0.27 m
width b = 0.63 m
For infinite sheet, magnetic field is given as

magnetic flux is given as




Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V