Answer: The correct answer is "Mechanical waves can apply pressure to and push on objects in their path".
Explanation:
Mechanical wave is wave in which there is an oscillation of the wave. The energy is transferred through a medium. Mechanical waves can apply pressure to and push on their path. Only the energy is transferred not the matter.
Mechanical waves are of three types: Transverse wave, Longitudinal wave and Surface wave. The examples of the mechanical wave are sound wave and water wave.
Sound is a pressure disturbance which travels through a medium. It consists of compression and rarefaction.
The mechanical waves need a medium for their propagation. They travel faster in denser medium.
Therefore, the correct option is (B).
Electrochemical cell representation for above reaction is,
Br-/Br2//I2/I-
Reaction at Anode: Br2 + 2e- → 2Br- (1)
Reaction at Cathode: 2I- → I2 + 2e- (2)
Standard reduction potential for Reaction 1 = Ered(anode) = 1.066 v
Standard reduction potential for Reaction 2 = Ered(cathode) = 0.535 v
Eo cell = Ered(cathode) - Ered(anode)
= 0.535 - 1.066
= -0.531v
Now, we know that ΔGo = -nF (Eo cell) ..............(3)
Also, ΔGo = RTln(K) ..........(4)
Equation 3 and 4 we get,
ln (K) = nF (Eo cell) / RT
= 2 X 96500 X (-0.531)/ (8.314 X 298)
∴ K = 1.085 X 10^-18.
Let's write the reaction first.
HCl + H₂O ---> H₃O⁺ + Cl⁻
These reaction has two reactants, either the proton donor or the proton acceptor. Water is amphoteric, meaning it can act as an acid or base. Since HCl is an acid, then water in this reaction acts as a base.
1. The proton donor is HCl because it donates H+ to water which yields a hydronium ion, H₃O⁺.
2. The proton acceptor is water.
12.1% is the mass percent of hydrogen in hexanal
The answer to this question would be CrO3 or H2SO4. These reagents would efficiently accomplish the transformation of 2-methyl-3-cyclopentenol into 2-methyl-3-cyclopentenone. The synthetic strategy is used for the bond forming and transformation of the molecule. The reagent required depends on the type of molecule.