Answer:
a) 2.5 m/s. (In the opposite direction to the direction in which she threw the boot).
b) The centre of mass is still at the starting point for both bodies.
c) It'll take Sally 12 s to reach the shore which is 30 m from her starting point.
Explanation:
Linear momentum is conserved.
(mass of boot) × (velocity of boot) + (mass of sally) × (velocity of Sally) = 0
5×30 + 60 × v = 0
v = (-150/60) = -2.5 m/s. (Minus inicates that motion is in the opposite direction to the direction in which she threw the boot).
b) At time t = 10 s,
Sally has travelled 25 m and the boot has travelled 300 m.
Taking the starting point for both bodies as the origin, and Sally's direction as the positive direction.
Centre of mass = [(60)(25) + (5)(-300)]/(60+5)
= 0 m.
The centre of mass is still at the starting point for both bodies.
c) The shore is 30 m away.
Speed = (Distance)/(time)
Time = (Distance)/(speed) = (30/2.5)
Time = 12 s
Hope this Helps!!!
Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.
Energy can change form, but the total amount of energy stays the same.
Acceleration, a = (v - u)/t
where v is the final velocity, u is the initial velocity, and t is the time.
This formula on a velocity time graph represents the slope of the graph.
The equation for Hall voltage Vh is:
Vh=v*B*w, where v is the velocity of the strip, B is the magnitude of the magnetic field, and w is the width of the strip.
v=25 cm/s = 0.25 m/s
B=5.6 T
w= 1.2 mm = 0.0012 m
We input the numbers into the equation and get:
Vh= 0.25*5.6*0.0012 = 0.00168 V
The maximum Hall voltage is Vh= 0.00168 V.