Answer:
Explanation:
The general equation for the disk with moment of inertia I when given small angular displacement
is given by

Replacing

where
is the angular frequency of oscillation
General solution for this Equation is given by

where 

Thus K can be written as

By definition it is known that force equals mass by acceleration. In other words F = m * a. To find the acceleration, you must clear the formula mentioned. Therefore, for a force of 190.08N and a mass of 28 Kg, we have that the acceleration is a = F / m = (190.08) / (28) = 6.79 m / s ^ 2
Below are the choices that can be found elsewhere:
a. 268 kJ
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have:
<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>
<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>
<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>
<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>
<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>
<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>
Answer:
Gravity
Explanation:
The answer is gravity because when the 3 masses were hung from the spring, gravity pulled the spring towards the ground.