Are you looking for the area or the perimeter?
Perimeter: 24
Area: 32
Hope this helped!
-TTL
ANSWER
The set of all rational numbers and the set of all real numbers.
EXPLANATION
The set of rational numbers contains all numbers that can be written in the form,

where a and b are integers and b≠0.
The given number is

It belongs to the set of rational numbers.
The set of rational numbers is a subset of the set of real numbers.
Hence

also belongs to the set of real numbers.
The correct answer is A.
Answer:
Use this to solve 3
Step-by-step explanation:
Area = 1/2 b.c sin A
=1/2(13.1)(8.7)sin29. 17
<span>Find out how much is 46% of 350 and add this number to 350 to get the number of products we sold.
46 % of 350 = 350 * 46/100
(46% is converted intro a fraction)
= 161.
The number of products we sold = 350 + 161
= 511</span>
let's say the point dividing JK is say point P, so the JK segment gets split into two pieces, JP and PK
![\bf ~~~~~~~~~~~~\textit{internal division of a line segment} \\\\\\ J(-25,10)\qquad K(5,-20)\qquad \qquad \stackrel{\textit{ratio from J to K}}{7:3} \\\\\\ \cfrac{J~~\begin{matrix} P \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} P \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~K} = \cfrac{7}{3}\implies \cfrac{J}{K} = \cfrac{7}{3}\implies3J=7K\implies 3(-25,10)=7(5,-20)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%7D%20%5C%5C%5C%5C%5C%5C%20J%28-25%2C10%29%5Cqquad%20K%285%2C-20%29%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20J%20to%20K%7D%7D%7B7%3A3%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7BJ~~%5Cbegin%7Bmatrix%7D%20P%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B~~%5Cbegin%7Bmatrix%7D%20P%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~K%7D%20%3D%20%5Ccfrac%7B7%7D%7B3%7D%5Cimplies%20%5Ccfrac%7BJ%7D%7BK%7D%20%3D%20%5Ccfrac%7B7%7D%7B3%7D%5Cimplies3J%3D7K%5Cimplies%203%28-25%2C10%29%3D7%285%2C-20%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf P=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill\\\\ P=\left(\cfrac{(3\cdot -25)+(7\cdot 5)}{7+3}\quad ,\quad \stackrel{\textit{y-coordinate}}{\cfrac{(3\cdot 10)+(7\cdot -20)}{7+3}}\right) \\\\\\ P=\left( \qquad ,\quad \cfrac{30-140}{10} \right)\implies P=\left(\qquad ,~~\cfrac{-110}{10} \right)\implies P=(\qquad ,\quad -11)](https://tex.z-dn.net/?f=%5Cbf%20P%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20P%3D%5Cleft%28%5Ccfrac%7B%283%5Ccdot%20-25%29%2B%287%5Ccdot%205%29%7D%7B7%2B3%7D%5Cquad%20%2C%5Cquad%20%5Cstackrel%7B%5Ctextit%7By-coordinate%7D%7D%7B%5Ccfrac%7B%283%5Ccdot%2010%29%2B%287%5Ccdot%20-20%29%7D%7B7%2B3%7D%7D%5Cright%29%20%5C%5C%5C%5C%5C%5C%20P%3D%5Cleft%28%20%5Cqquad%20%2C%5Cquad%20%5Ccfrac%7B30-140%7D%7B10%7D%20%5Cright%29%5Cimplies%20P%3D%5Cleft%28%5Cqquad%20%2C~~%5Ccfrac%7B-110%7D%7B10%7D%20%5Cright%29%5Cimplies%20P%3D%28%5Cqquad%20%2C%5Cquad%20-11%29)