Here we have to choose the right option which tells the moles of CaCl₂ will react with 6.2 moles of AgNO₃ in the reaction
2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
6.2 moles of silver nitrate (AgNO₃) will react with B. 3.1 moles of calcium chloride (CaCl₂).
From the reaction: 2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
Thus 2 moles of AgNO₃ reacts with 1 mole of CaCl₂
Henceforth, 6.2 moles of AgNO₃ reacts with
= 3.1 moles of CaCl₂.
1 mole of CaCl₂ reacts with 2 moles of AgNO₃. Thus-
A. 2.2 moles of CaCl₂ will react with 2.2×2 = 4.4 moles of AgNO₃.
C. 6.2 moles of CaCl₂ will reacts with 6.2×2 = 12.4 moles of AgNO₃.
D. 12.4 moles of CaCl₂ will reacts with 12.4 × 2 = 24.8 moles of AgNO₃
Thus the right answer is 6.2 moles of AgNO₃ will react with 3.1 moles of CaCl₂.
Answer:
The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a density of 1.01 g/mL is 12.90% by mass
Explanation:
2.23 M aqueous solution of NaCl means there are 2.23 moles of NaCl in 1000 mL of solution.
We know that density is equal to ratio of mass to volume.
Here density of solution is 1.01 g/mL.
So mass of 1000 mL solution = (
) g = 1010 g
molar mass of NaCl = 58.44 g/mol
So mass of 2.23 moles of NaCl = (
) g = 130.3 g
% by mass is ratio of mass of solute to mass of solution and then multiplied by 100.
Here solute is NaCl.
So % by mass of 2.23 M aqueous solution of NaCl =
% = 12.90%
Q1)
the number of moles can be calculated as follows
number of moles = mass present / molar mass
number of moles is the amount of substance.
4.8 g of Ca was added therefore mass present of Ca is 4.8 g
molar mass of Ca is 40 g/mol
molar mass is the mass of 1 mol of Ca
therefore if we substitute these values in the equation
number of moles of Ca = 4.8 g / 40 g/mol = 0.12 mol
0.12 mol of Ca is present
q2)
next we are asked to calculate the number of moles of water present
again we can use the same equation to find the number of moles of water
number of moles = mass present / molar mass
3.6 g of water is present
sum of the products of the molar masses of the individual elements by the number of atoms
H - 1 g/mol and O - 16 g/mol
molar mass of water = (1 g/mol x 2 ) + 16 g/mol = 18 g/mol
molar mass of H₂O is 18 g/mol
therefore number of moles of water = 3.6 g / 18 g/mol = 0.2 mol
0.2 mol of water is present
Answer:
Bi2(SO4)3
Explanation:
Bismuth(iii) sulfate is an ionic compound therefore, their is transfer of electron. Ionic compound has both cations and anions. The cations is positively charged ion while the anions is negatively charged ions. The cations loses electron to become positively charged while the anions gains electron to become negatively charged.
From the compound above, Bismuth(iii) sulfate the cations will be Bismuth ion which loses 3 electrons. The anions is the sulfate ion (S04)2- with a -2 charge.
The chemical formula can be computed from the charge configuration as follows
Bi3+ and (SO4)2-
cross multiply the charges living the sign behind to get the chemical formula
Bi2(SO4)3
Note the final chemical formula, the numbers are sub scripted