Answer;
6CO2 + 18ATP + 12 NADPH → C6H12O6 + 18ATP + 18Pi + 12NADP+
Explanation;
-The process of Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water.
-The ATP and NADPH molecules produced by the light-dependent reactions of photosynthesis power sugar synthesis in the Calvin cycle. In the Calvin cycle, three molecules of CO2 are added to three molecules of ribulose bisphosphate (RuBP), a 5-carbon sugar already present in the stroma.
-This results to a total of eighteen carbons in the cycle. As the three RuBP molecules accept a molecule of carbon dioxide, they immediately break down into six 3-carbon molecules of phosphoglyceric acid which is a hexose.
The heat that is required to raise the temperature of an object is calculated through the equation,
heat = mass x specific heat x (T2 - T1)
Specific heat is therefore calculated through the equation below,
specific heat = heat / (mass x (T2 - T1))
Substituting,
specific heat = 645 J / ((28.4 g)(15.5 - - 11.6))
The value of specific heat from above equation is 0.838 J/g°C.
1)we need a balanced equation: CuSO₄ + Zn ---> ZnSO₄ + Cu
2) we need to convert the grams of CuSO₄ to moles using the molar mass.
molar mass CuSO₄= 63.5 + 32.0 + (4 x 16.0)= 160 g/mol

3) convert moles of CuSO₄ to moles of Cu

4) convert moles of Cu to grams using it's molar mass.
molar mass Cu= 63.5 g/mol

I did it step-by-step as the explanation but you can do all of this in one step.
potential energy with the heat given to the food