answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
2 years ago
11

In general, ionization energies increase across a period from left to right. Explain why the second ionization energy of Cr is h

igher, not lower, than that of Mn.
Chemistry
1 answer:
rodikova [14]2 years ago
3 0

Answer:So this leads to the fact that second ionization energy  of chromium is higher as compared to that of Manganese because of the unavailability of electron in the outermost orbital in case of chromium so the second electron has to be removed form the stable half filled 3d  orbital which requires more energy. Whereas in case of Manganese there is an electron available in outermost 4s orbital.

Explanation:

Ionization energy is the amount of energy that we require to remove an electron form an isolated gaseous atom.

As we move from left to right across a period electrons are added to the same outermost shell therefore the attraction between the electrons and nucleus increases since more number of negatively charged electron are attracted to the positively charged nucleus.  This attraction leads to the decrease in atomic radii across a period and increase in ionization energy .

The increase in ionization energy occurs due to the fact that as the attraction  between the nucleus and outermost electrons increases so the electrons are more tightly bound to the nucleus hence more amount of energy is required to ionize the electron which leads to increase in ionization energy.

The electronic configuration of Cr and Mn are:

Cr:[Ar]3d⁵4S¹

Mn:[Ar]3d⁵4S²

The electronic configuration of Cr and Mn after 1st ionization:

Cr:[Ar]3d⁵4S⁰

Mn:[Ar]3d⁵4S¹

The electronic configuration of Cr and Mn after 2nd ionization:

Cr:[Ar]3d⁴4S⁰

Mn:[Ar]3d⁵4S⁰

As we can see that that 3d orbital of Cr (Chromium) is half filled with 5 electrons in it  and 4s orbital of Cr is also half-filled.

So when Cr is ionized for the first time then the electron from the half-filled 4s orbital will be removed .As the 1 electron present in outer most 4s orbital is removed so the 4s orbital now is completely vacant.

Now for the second ionization energy an electron ahs to be removed from half-filled 3d⁵ orbital. Hunds rule of maximum multiplicity states that the fully-filled or half-filled orbitals have maximum stability on account of symmetry and exchange energy.

So half-filled 3d⁵ orbital of Cr is very stable and hence to remove an electron from this would be require a lot of energy and hence the second ionization energy of chromium is higher than that of Manganese.

In case of Mn  the 3d orbital is also half -filled as chromium but the 4s orbital contains two electrons. when we remove the first electron from this orbital then also there is 1 electron present in the 4s orbital . So for the second ionization of Mn the only electron left in 4s orbital will be removed as the removal of electron from a 4s orbital is much easier as it requires less amount of energy as compared to  removal of  a electron from stable half filled 3d orbital.

So this leads to the fact that second ionization energy  of chromium is higher as compared to that of Manganese because of the unavailability of electron in the outermost orbital in case of chromium so the second electron has to be removed form the stable half filled 3d  orbital which requires more energy. Whereas in case of Manganese there is an electron available in outermost 4s orbital.

You might be interested in
A 52.0 mL volume of 0.25 M HBr is titrated with 0.50 M KOH. Calculate the pH after addition of 26.0 mL of KOH at 25 ∘C.
prohojiy [21]
The balanced equation for the above reaction is 
HBr + KOH ---> KBr + H₂O
stoichiometry of HBr to KOH is 1:1
HBr is a strong acid and KOH is a strong base and they both completely dissociate.
The number of HBr moles present - 0.25 M / 1000 mL/L x 52.0 mL = 0.013 mol
The number of KOH moles added - 0.50 M / 1000 mL/L x 26.0 mL  = 0.013 mol
the number of H⁺ ions = number of OH⁻ ions
therefore complete neutralisation occurs. 
Therefore solution is neutral. At 25 °C, when the solution is neutral, pH = 7.
Then pH of solution is 7
 
7 0
2 years ago
Explain why you hear a “whoosh” sound when you open a can containing a carbonated drink. Which gas law applies?
Lana71 [14]

Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).

6 0
2 years ago
Read 2 more answers
HIPVs can cause what two more severe illnesses?
Nat2105 [25]
One of them are Cancer
4 0
2 years ago
Alka‑Seltzer is marketed as a remedy for stomach problems, such as heartburn or indigestion, and pain relief. It contains aspiri
Papessa [141]

Answer:

The equation for the reaction of one sodium bicarbonate ( NaHCO3 ) molecule with one citric acid (C6H8O7) molecule is the following:

Sodium Bicarbonate + Citric Acid ⇒ Water + Carbon Dioxide + Sodium Citrate

NaHCO3 + C6H8O7 ⇒ 3 CO2 + 3 H2O + Na3C6H5O7

Explanation:

The reaction is in balance, that is, the whole H2CO3 is not finished, but a little bit of this acid is left in the solution. Therefore, when sodium bicarbonate is added to the solution with citric acid, sodium citrate salt (C6H5O7Na3) and carbonic acid (H2CO3) are formed, which is rapidly broken down into water (H2O) and carbonic oxide (CO2).

C6H8O7 + NaHCO3 ⇒ C6H5O7Na3 + 3 H2CO3

C6H5O7Na3 + 3 H2CO3 ⇔ C6H5O7Na3 + 3 H2O + 3 CO2

5 0
2 years ago
An electron is on a -2.5 eV energy level. The electron is struck by a 2.5 eV photon. What will most likely happen?
kati45 [8]
The correct answer would be C
5 0
2 years ago
Other questions:
  • What is the oxidation number for iodine in Mg(IO3)2 ?
    13·2 answers
  • Heptane (C7H16) and octane (C8H18) are constitutents of gasoline. At 80 degree celsius, the vapor pressure of heptane is 428mmHg
    5·2 answers
  • What mass of silver ag which has an atomic mass of 107.87 amu contains the same number of atoms contained in 10.0g of boron b wh
    6·2 answers
  • A sample of a compound containing only carbon and oxygen decomposes and produces 24.50g of carbon and 32.59g of oxygen. what is
    5·2 answers
  • According to the lab guide, which changes below will you look for in order to test the hypothesis? check all that apply. changes
    15·2 answers
  • Match each term to a correct example from the chemical equation: 2A + B2 → 2AB.
    6·1 answer
  • Which statement is true for a solution when its concentration of hydroxide ions becomes equal to the concentration of hydronium
    11·2 answers
  • A chamber with a fixed volume is shown above. The temperature of the gas inside the chamber before heating is 25.2 C and it’s pr
    15·1 answer
  • Solving applied density problems Mr. Auric Goldfinger, criminal mastermind, intends to smuggle several tons of gold across Inter
    5·1 answer
  • Describe a NAMED example of a non-equilibrium system with respect to it’s energetic nature and equilibrium status.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!