answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
2 years ago
6

The spring in a retractable ballpoint pen is 1.8 cm long, with a 300 N/m spring constant. When the pen is retracted, the spring

is compressed by 1.0 mm. When you click the button to extend the pen, you compress the spring by an additional 6.0 mm. How much energy is required to extend the pen?

Physics
2 answers:
Eddi Din [679]2 years ago
7 0

Answer:

The energy required to extend the pen is 7.2 mJ.

Explanation:

Given that,

Length = 1.8 cm

Spring constant = 300 N/m

Spring is compressed = 1.0 mm

Again, Compressed = 6.0 mm

Total compressed = 1.0+6.0 = 7.0 mm

We need to calculate the required energy

The energy required is equal to the change in spring potential energy

E=PE_{2}-PE_{1}

E=\dfrac{1}{2}kx_{2}^2-\dfrac{1}{2}kx_{1}^2

Put the value into the formula

E=\dfrac{1}{2}\times300\times(7.0\times10^{-3})^2-\dfrac{1}{2}\times300\times(1.0\times10^{-3})^2

E=0.0072\ J

E=7.2\ mJ

Hence, The energy required to extend the pen is 7.2 mJ.

xxMikexx [17]2 years ago
7 0

7.2 × 10⁻³ J of energy is required to extend the pen

\texttt{ }

<h3>Further explanation</h3>

Let's recall Elastic Potential Energy formula as follows:

\boxed{E_p = \frac{1}{2}k x^2}

where:

<em>Ep = elastic potential energy ( J )</em>

<em>k = spring constant ( N/m )</em>

<em>x = spring extension ( compression ) ( m )</em>

Let us now tackle the problem!

\texttt{ }

<u>Given:</u>

length of spring = L = 1.8 cm

spring constant = k = 300 N/m

initial compression = x₁ = 1.0 mm = 1

final compression = x₂ = 1.0 + 6.0 = 7.0 mm

<u>Asked:</u>

energy required to extend the pen = ΔEp = ?

<u>Solution:</u>

\Delta Ep = Ep_2 - Ep_1

\Delta Ep = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2

\Delta Ep = \frac{1}{2}k ( x_2^2 - x_1^2 )

\Delta Ep = \frac{1}{2} \times 300 \times [ (7 \times 10^{-3})^2 - (1 \times 10^{-3})^2 ]

\Delta Ep = 7.2 \times 10^{-3} \texttt{ Joule}

\texttt{ }

<h3>Conclusion :</h3>

7.2 × 10⁻³ J of energy is required to extend the pen

\texttt{ }

<h3>Learn more</h3>
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Young Modulus : brainly.com/question/9202964
  • Simple Harmonic Motion : brainly.com/question/12069840

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Elasticity

You might be interested in
Write a hypothesis about how the height of the cylinder affects the temperature of the water. Use the "if . . . then . . . becau
AnnyKZ [126]
The statement that can be used to answer this  question is:

"If the cylinder is brought higher then, its temperature when brought down becomes higher because a greater amount of potential energy is converted to thermal energy."

The potential energy is converted to thermal energy when the object is released the velocity becomes higher because of the acceleration due to gravity.
8 0
2 years ago
Read 2 more answers
7. A local sign company needs to install a new billboard. The signpost is 30 m tall, and the ladder truck is parked 24 m away fr
wolverine [178]
<h2>Solution :</h2>

Here ,

• Height of sign post = 30 m

• Distance between signpost and truck = 24 m

Let the

• Top of signpost = A

• Bottom of signpost = B

• The end of truck facing sign post be = C

Now as we can clearly imagine that the ladder will act as an hypotenuse to the Triangle ABC .

Where

• AB = Height of signpost = 30 m

• BC = distance between both = 24 m

• AC = Minimum length of ladder

→ AC² = AB² + BC² ( As we can see AB is perpendicular to BC )

→ AC² = (30)² + (24)²

→ AC² = 900 + 576

→ AC² = 1476

→ AC = 38.41875

or AC apx = 38.42

So minimum height of ladder = 38.42

6 0
2 years ago
What resistance must be connected in parallel with a 633-Ω resistor to produce an equivalent resistance of 205 Ω?
alukav5142 [94]

Answer:

303 Ω

Explanation:

Given

Represent the resistors with R1, R2 and RT

R1 = 633

RT = 205

Required

Determine R2

Since it's a parallel connection, it can be solved using.

1/Rt = 1/R1 + 1/R2

Substitute values for R1 and RT

1/205 = 1/633 + 1/R2

Collect Like Terms

1/R2 = 1/205 - 1/633

Take LCM

1/R2 = (633 - 205)/(205 * 633)

1/R2 = 428/129765

Take reciprocal of both sides

R2 = 129765/428

R2 = 303 --- approximated

5 0
2 years ago
In order to hike around a portion of Lake Allatoona, a tour guide determines that he must take his group 150 m east, 60 m north,
SCORPION-xisa [38]

Answer:

100 meters, 54.5 East of North or 125.5 North of East.

Explanation:

Try drawing it out to get a better visual. Make sure that when you draw the arrows that you make a scale (for example: 1 cm = 10 meters). After drawing it out, draw a line from the origin/starting point and connect it to the end point from the "75 m west" arrow. Then, measure the line you drew and convert it back into meters. Lastly, measure the angle.

3 0
2 years ago
A typical garden hose has an inner diameter of 5/8". Let's say you connect it to a faucet and the water comes out of the hose wi
castortr0y [4]
Since speed (v) is in ft/sec, let's convert our diameters from inches to feet:
1) 5/8in = 0.625in
0.625in × 1ft/12in = 0.0521ft
2) 0.25in × 1ft/12in = 0.021ft
Equation:
v = 4q \div ( {d}^{2} \pi) \: where \: q = flow \\ v = velocity \: (speed) \: and \:  \\ d = diameter \: of \: pipe \: or \: hose \\ and \: \pi = 3.142
we \: can \: only \: assume \:that \\  flow \: (q) \:stays \: same \: since \: it \\  isnt \: impeded \: by \:  anything \\ thus \:it  \: (q)\:  stays \: the \: same \:  \\ so \: 4q \: can \: be \: removed \: from \:  \\ the \: equation
then \: we \: can \: assume \: that \: only \\ v \: and \: d \: change \: leading \:us \: to >  >  \\ (v1 \times {d1}^{2} \pi) = (v2  \times   {d2}^{2}\pi)
both \: \pi \: will \: cancel \: each \: other \: out \:  \\ as \: constants \:since \: one \: is \: on \\ each \: side \: of \: the \:  =

(v1  \times   {d1}^{2}) = (v2 \ \times {d2}^{2}) \\ (7.0 \times   {0.052}^{2}) = (v2  \times   {0.021}^{2}) \\ divide \: both \: sides \: by \:  {0.021}^{2} \\ to \: solve \: for \: v2 >  >
v2 = (7.0)( {0.052}^{2} ) \div ( {0.021}^{2})  \\ v2 = (7.0)(.0027) \div (.00043) \\ v2 = 44 \: feet \: per \: second
new velocity coming out of the hose then is
44 ft/sec
4 0
2 years ago
Other questions:
  • To absorb kinetic energy and dissipate the force of a crash, newer cars __________
    10·1 answer
  • Astronomers have discovered several volcanoes on io, a moon of jupiter. one of them, named loki, ejects lava to a maximum height
    13·1 answer
  • Lindsay is boiling macaroni noodles in a pot of water. The noodles rise and fall as the thermal energy currents move from areas
    14·1 answer
  • How much heat is required to convert 18.0 g of ice at -10.0C to steam at 100.0C? Express your answer in joules, calories, and Bt
    6·1 answer
  • The following times are given using metric prefixes on the base SI unit of time: the second. Rewrite them in scientific notation
    9·2 answers
  • In a grassland ecosystem, praying mantises catch and eat grasshoppers. However, there has been a significant decrease in the pra
    13·2 answers
  • The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change
    9·1 answer
  • Which of the following relationships must be true according to the laws of series and parallel connections? (Select only relatio
    5·1 answer
  • Suppose a 500 mb chart valid today at 12 Z indicates a large trough over the eastern US and a large ridge over the western US. A
    13·1 answer
  • A 10 kg ball moving at 13 m/s strikes a 20 kg ball at rest. after the collision the 10 kg ball is moving with a velocity of 7m/s
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!