Answer:
= 913.84 mL
Explanation:
Using the combined gas laws
P1V1/T1 = P2V2/T2
At standard temperature and pressure. the pressure is 10 kPa, while the temperature is 273 K.
V1 = 80.0 mL
P1 = 109 kPa
T1 = -12.5 + 273 = 260.5 K
P2 = 10 kPa
V2 = ?
T2 = 273 K
Therefore;
V2 = P1V1T2/P2T1
= (109 kPa × 80 mL × 273 K)/(10 kPa× 260.5 K)
<u>= 913.84 mL</u>
Answer:
0.0011 mol/L.s
Explanation:
The average rate of disappearing of the reagent is the variation of the concentration of it divided by the time that this variation is being measured. The reaction rate, is proportional to the coefficient of the substance, so, for a generic reaction:
aA + bB --> cC + dD
rate = -(1/a)Δ[A]/Δt = -(1/b)Δ[B]/Δt = (1/c)Δ[C]/Δdt = (1/d)Δ[D]/dt
The minus sign is because of the reagent is desapering, so:
rate = -(1/2)*(0.0209 - 0.0300)/(10 - 6)
rate = 0.0011 mol/L.s
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer:
Explanation:
In one of the process, energy is built up from scratch, in the other one, energy is liberated for use by an organism or body.
The first process deals with a metabolic reaction in which energy is liberated:
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + energy
In the above process, energy is liberated when glucose combines with oxygen. The waste products are carbon dioxide and water. This process liberates heat energy which can be used to do work.
In the reverse process:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
This process stores energy in carbon chains as chemical energy. It is this energy that is released in the first process.
Therefore, we can see that the first process liberates energy and the reverse process stores energy.
<Sgx,JASYLDhLAxhclsxb cddont know