answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
2 years ago
15

The formula $F = \frac{9}{5} C + 32$ can be used to convert temperatures between degrees Fahrenheit ($F$) and degrees Celsius ($

C$). How many degrees are in the Celsius equivalent of $-22^\circ F$?
Physics
1 answer:
slamgirl [31]2 years ago
7 0

Answer:

-30° C

Explanation:

Data provided in the problem:

The formula for conversion as:

F  = (9/5)C + 32

Now,

for the values of F = -22 , C = ?

Substituting the value of F in the above formula, we get

-22 = (9/5)C + 32

or

-22 - 32 = (9/5)C

or

(9/5)C = - 54

or

C = - 54 × (5/9)

or

C = - 30 °

Hence, -22 Fahrenheit equals to -30°C

You might be interested in
An electric heater draws a steady current = 20.0 A on a 120-V line. (a) Calculate how much power does it require.
babymother [125]

Answer:

The heater power required is 2400 W. The power in the heater can be calculated as the product of the voltage line and the steady current:

P=V.I

P=120 V * 20 A = 2400 VA = 2400 W

Explanation:

8 0
2 years ago
Official (Closed) - Non Sensitive
Pavlova-9 [17]

Answer:

The minimum running time is 319.47 s.

Explanation:

First we find the distance covered and time taken by the train to reach its maximum speed:

We have:

Initial Speed = Vi = 0 m/s    (Since, train is initially at rest)

Final Speed = Vf = 29.17 m/s

Acceleration = a = 0.25 m/s²

Distance Covered to reach maximum speed = s₁

Time taken to reach maximum speed = t₁

Using 1st equation of motion:

Vf = Vi + at₁

t₁ = (Vf - Vi)/a

t₁ = (29.17 m/s - 0 m/s)/(0.25 m/s²)

t₁ = 116.68 s

Using 2nd equation of motion:

s₁ = (Vi)(t₁) + (0.5)(a)(t₁)²

s₁ = (0 m/s)(116.68 s) + (0.5)(0.25 m/s²)(116.68 s)²

s₁ = 1701.78 m = 1.7 km

Now, we shall calculate the end time and distance covered by train, when it comes to rest on next station.

We have:

Final Speed = Vf = 0 m/s    (Since, train is finally stops)

Initial Speed = Vi = 29.17 m/s     (The train must maintain max. speed for min time)

Deceleration = a = - 0.7 m/s²

Distance Covered to stop = s₂

Time taken to stop = t₂

Using 1st equation of motion:

Vf = Vi + at₂

t₂ = (Vf - Vi)/a

t₂ = (0 m/s - 29.17 m/s)/(- 0.7 m/s²)

t₂ = 41.67 s

Using 2nd equation of motion:

s₂ = (Vi)(t₂) + (0.5)(a)(t₂)²

s₂ = (29.17 m/s)(41.67 s) + (0.5)(- 0.7 m/s²)(41.67 s)²

s₂ = 607.78 m = 0.6 km

Since, we know that the rest of 7 km, the train must maintain the maximum speed to get to the next station in minimum time.

The remaining distance is:

s₃ = 7 km - s₂ - s₁

s₃ = 7 km - 0.6 km - 1.7 km

s₃ = 4.7 km

Now, for uniform speed we use the relation:

s₃ = vt₃

t₃ = s₃/v

t₃ = (4700 m)/(29.17 m/s)

t₃ = 161.12 s

So, the minimum running time will be:

t = t₁ + t₂ + t₃

t = 116.68 s + 41.67 s + 161.12 s

<u>t = 319.47 s</u>

5 0
2 years ago
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
2 years ago
Read 2 more answers
A 250 Hz tuning fork is struck and the intensity at the source is I1 at a distance of one meter from the source. (a) What is the
Zina [86]

Answer:

a) 0.0625 I_1

b) 3.16 m

Explanation:

<u>Concepts and Principles  </u>

The intensity at a distance r from a point source that emits waves of power P is given as:  

I=P/4π*r^2                         (1)

<u>Given Data</u>

f (frequency of the tuning fork) = 250 Hz

I_1 is the intensity at the source a distance r_1 = I m from the source.  

<u>Required Data</u>

- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.

- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.  

<u>solution:</u>

(a)  

According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:

I∝1/r^2

Set the proportionality:  

I_1/I_2=(r_2/r_1)^2                                 (2)

Solve for I_2 :  

I_2=I_1(r_2/r_1)^2  

I_2=0.0625 I_1

(b)  

Solve Equation (2) for r_2:  

r_2=(√I_1/I_2)*r_1

where I_2 = (1/10)*I_1:

r_2=(√I_1/1/10*I_1)*r_1

     =3.16 m

3 0
2 years ago
A snowball is melting at a rate of 324π mm3/s. At what rate is the radius decreasing when the volume of the snowball is 972π mm3
Oduvanchick [21]

Answer:

The radius is decreasing at 4 mm/s

Explanation:

The volume of a sphere is:

V = 4/3*\pi *r^3   So, when the volume is 972π mm^3 the radius r is:

r = 9mm

Now, the change rate is given by the derivative:

dV/dt = 4/3*\pi *3*r^2*dr/dt  

Where: dV/dt = -324π mm^2/s

            r = 9mm

Solving for dr/dt:

dr/dt = -4mm/s

5 0
2 years ago
Other questions:
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
    8·2 answers
  • At some airports there are speed ramps to help passengers get from one place to another. A speed ramp is a moving conveyor belt
    13·1 answer
  • Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when sp
    7·1 answer
  • A wire carrying a current of 10 A and 2 m in length is placed in a field of flux density 0.15 T. What’s the force on the wire if
    5·1 answer
  • In a semiclassical model of the hydrogen atom, the electron orbits the proton at a distance of 0.053 nm. Part A What is the elec
    12·1 answer
  • A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a
    9·1 answer
  • The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of
    7·1 answer
  • It takes a slug 20 minutes to travel from the grass to the trash can , a trip of 15 meters. How far could the slug travel in 60
    11·1 answer
  • A student must design an experiment to determine the relationship between the mass of an object and the resulting acceleration w
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!