Answer:
The kinetic energy dissipated is 3286.5 J
Explanation:
K.E before collision = 1/2m1v1^2 = 1/2×313×6^2 = 5634 J
K.E after collision = 1/2(m1+m2)v2^2
From the law of conservation of momentum:
m1+m2 = m1v1/v2 = 313×6/2.5 = 751.2 kg
K.E after collision = 1/2×751.2×2.5^2 = 2347.5 J
K.E dissipated = 5634 J - 2347.5 J = 3286.5 J
Answer:
44J
Explanation:
Given parameters:
Mass of rock = 0.22kg
Initial velocity = 20m/s
Distance moved = 10m
Unknown:
Initial kinetic energy of the rock = ?
Solution:
To solve this problem, we need to understand that kinetic energy is the energy due to the motion of a body.
It is mathematically expressed as;
Kinetic energy =
m v²
m is the mass
v is the velocity
Kinetic energy =
x 0.22 x 20² = 44J
His answer was incorrect because according to ohm's law the formula used should have been R=V/I instead of multiplying and the answer should be 8ohms
Answer:


Explanation:
As the disc is unrolling from the thread then at any moment of the time
We have force equation as

also by torque equation we can say



Now we have



Also from above equation the tension force in the string is


Answer:
. The loop is pushed to the right, away from the magnetic field
Explanation
This decrease in magnetic strength causes an opposing force that pushes the loop away from the field