Answer:
The final volume is 39.5 L = 0.0395 m³
Explanation:
Step 1: Data given
Initial temperature = 200 °C = 473 K
Volume = 0.0250 m³ = 25 L
Pressure = 1.50 *10^6 Pa
The pressure reduce to 0.950 *10^6 Pa
The temperature stays constant at 200 °C
Step 2: Calculate the volume
P1*V1 = P2*V2
⇒with P1 = the initial pressure = 1.50 * 10^6 Pa
⇒with V1 = the initial volume = 25 L
⇒with P2 = the final pressure = 0.950 * 10^6 Pa
⇒with V2 = the final volume = TO BE DETERMINED
1.50 *10^6 Pa * 25 L = 0.950 *10^6 Pa * V2
V2 = (1.50*10^6 Pa * 25 L) / 0.950 *10^6 Pa)
V2 = 39.5 L = 0.0395 m³
The final volume is 39.5 L = 0.0395 m³
The balanced equation for the above reaction is
HBr + KOH ---> KBr + H₂O
stoichiometry of HBr to KOH is 1:1
HBr is a strong acid and KOH is a strong base and they both completely dissociate.
The number of HBr moles present - 0.25 M / 1000 mL/L x 52.0 mL = 0.013 mol
The number of KOH moles added - 0.50 M / 1000 mL/L x 26.0 mL = 0.013 mol
the number of H⁺ ions = number of OH⁻ ions
therefore complete neutralisation occurs.
Therefore solution is neutral. At 25 °C, when the solution is neutral, pH = 7.
Then pH of solution is 7
Answer : The molarity of solution is, 1.00 M
Explanation : Given,
Moles of
= 0.500 mol
Volume of solution = 0.500 L
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Therefore, the molarity of solution is, 1.00 M
The given dehydration equation is,

Cadmiumnitrate tetrahydrate when heated dehydrates releasing the combined water as water vapor. The reaction produces 4 moles of gaseous product water vapor. So, the degree of disorder or randomness increases. Hence, the sign of change in entropy is positive.
This reaction is spontaneous at room temperature even if it is endothermic as the sign of change in entropy is positive.
Barfoed's test is a concoction test utilized for identifying the nearness of monosaccharides. It depends on the diminishment of copper(II) acetic acid derivation to copper(I) oxide (Cu2O), which frames a block red hasten.
Barfoed's reagent comprises of a 0.33 molar arrangement of unbiased copper acetic acid derivation in 1% acidic corrosive arrangement. The reagent does not keep well and it is, thusly, fitting to make it up when it is really required. May store uncertainly as per a few MSDS's.