Answer:
The molecular formula of the compound is
.
Explanation:
Let consider that given percentages are mass percentages, so that mass of each element are determined by multiplying molar massof the organic acid by respective proportion. That is:
Carbon


Hydrogen


Oxygen


Now, the number of moles (
), measured in moles, of each element are calculated by the following expression:

Where:
- Mass of the element, measured in grams.
- Molar mass of the element, measured in grams per mol.
Carbon (
,
)


Hydrogen (
,
)


Oxygen (
,
)


For each mole of organic acid, there are 7 moles of carbon, 6 moles of hydrogen and 2 moles of oxygen. Hence, the molecular formula of the compound is:

Answer:
We have to add 2.30 L of oxygen gas
Explanation:
Step 1: Data given
Initial volume = 4.00 L
Number of moles oxygen gas= 0.864 moles
Temperature = constant
Number of moles of oxygen gas increased to 1.36 moles
Step 2: Calculate new volume
V1/n1 = V2/n2
⇒V1 = the initial volume of the vessel = 4.00 L
⇒n1 = the initial number of moles oxygen gas = 0.864 moles
⇒V2 = the nex volume of the vessel
⇒n2 = the increased number of moles oxygen gas = 1.36 moles
4.00L / 0.864 moles = V2 / 1.36 moles
V2 = 6.30 L
The new volume is 6.30 L
Step 3: Calculate the amount of oxygen gas we have to add
6.30 - 4.00 = 2.30 L
We have to add 2.30 L of oxygen gas
Answer:
D
Explanation:
This explains how two noble gases molecules can have an attractive force between them.
This force is called as van dar Waals forces.
It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .
If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles
Answer:
<em><u></u></em>
Explanation:
<u />
<u>1. Dissociation equation</u>
<u />
Assuming 100% dissociation, the equation is:
- Ba(C₂H₃O₂)₂ → Ba²⁺ + 2C₂H₃O₂⁻
↑
acetate ions
<u>2. Molarity</u>
<u />
Calculate the molarity, M, of the solution:
- n = mass in grams / molar mass
- n = 69.g / 255.415g/mol = 0.27015 mol
- M = 0.27015mol / 0.970liter = 0.27850 mol/liter ≈ 0.28M
<u>3. Acetate ions</u>
From the chemical equation, 1 mol of dissolved Ba(C₂H₃O₂)₂ produces 2 acetate ions in solution.
Thus, 0.28 mol/liter × 2 = 0.56 mol/liter = 0.56M ← answer
Answer:
The particles of an ideal gas have no volume and no attractions for each other. In a real gas, however, the molecules do have a measurable volume. The molecules of real cases have intermolecular attractions for each other.
An ideal gas behaves like a real gas under the conditions of low temperature and high pressure.
This is because at low temperature and high pressure molecules of gas will have negligible kinetic energy and strong force of attraction.
Thus ethene gas does not behave like an ideal gas at low temperatures and high pressures.